mirror of https://github.com/jetkvm/kvm.git
Fix: linting errors
This commit is contained in:
parent
a9a1082bcc
commit
3a28105f56
|
@ -14,20 +14,20 @@ import (
|
|||
// AdaptiveBufferConfig holds configuration for adaptive buffer sizing
|
||||
type AdaptiveBufferConfig struct {
|
||||
// Buffer size limits (in frames)
|
||||
MinBufferSize int
|
||||
MaxBufferSize int
|
||||
MinBufferSize int
|
||||
MaxBufferSize int
|
||||
DefaultBufferSize int
|
||||
|
||||
|
||||
// System load thresholds
|
||||
LowCPUThreshold float64 // Below this, increase buffer size
|
||||
HighCPUThreshold float64 // Above this, decrease buffer size
|
||||
LowMemoryThreshold float64 // Below this, increase buffer size
|
||||
LowCPUThreshold float64 // Below this, increase buffer size
|
||||
HighCPUThreshold float64 // Above this, decrease buffer size
|
||||
LowMemoryThreshold float64 // Below this, increase buffer size
|
||||
HighMemoryThreshold float64 // Above this, decrease buffer size
|
||||
|
||||
|
||||
// Latency thresholds (in milliseconds)
|
||||
TargetLatency time.Duration
|
||||
MaxLatency time.Duration
|
||||
|
||||
TargetLatency time.Duration
|
||||
MaxLatency time.Duration
|
||||
|
||||
// Adaptation parameters
|
||||
AdaptationInterval time.Duration
|
||||
SmoothingFactor float64 // 0.0-1.0, higher = more responsive
|
||||
|
@ -37,25 +37,25 @@ type AdaptiveBufferConfig struct {
|
|||
func DefaultAdaptiveBufferConfig() AdaptiveBufferConfig {
|
||||
return AdaptiveBufferConfig{
|
||||
// Conservative buffer sizes for 256MB RAM constraint
|
||||
MinBufferSize: 3, // Minimum 3 frames (slightly higher for stability)
|
||||
MaxBufferSize: 20, // Maximum 20 frames (increased for high load scenarios)
|
||||
DefaultBufferSize: 6, // Default 6 frames (increased for better stability)
|
||||
|
||||
MinBufferSize: 3, // Minimum 3 frames (slightly higher for stability)
|
||||
MaxBufferSize: 20, // Maximum 20 frames (increased for high load scenarios)
|
||||
DefaultBufferSize: 6, // Default 6 frames (increased for better stability)
|
||||
|
||||
// CPU thresholds optimized for single-core ARM Cortex A7 under load
|
||||
LowCPUThreshold: 20.0, // Below 20% CPU
|
||||
HighCPUThreshold: 60.0, // Above 60% CPU (lowered to be more responsive)
|
||||
|
||||
LowCPUThreshold: 20.0, // Below 20% CPU
|
||||
HighCPUThreshold: 60.0, // Above 60% CPU (lowered to be more responsive)
|
||||
|
||||
// Memory thresholds for 256MB total RAM
|
||||
LowMemoryThreshold: 35.0, // Below 35% memory usage
|
||||
HighMemoryThreshold: 75.0, // Above 75% memory usage (lowered for earlier response)
|
||||
|
||||
|
||||
// Latency targets
|
||||
TargetLatency: 20 * time.Millisecond, // Target 20ms latency
|
||||
MaxLatency: 50 * time.Millisecond, // Max acceptable 50ms
|
||||
|
||||
|
||||
// Adaptation settings
|
||||
AdaptationInterval: 500 * time.Millisecond, // Check every 500ms
|
||||
SmoothingFactor: 0.3, // Moderate responsiveness
|
||||
SmoothingFactor: 0.3, // Moderate responsiveness
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -64,38 +64,38 @@ type AdaptiveBufferManager struct {
|
|||
// Atomic fields MUST be first for ARM32 alignment (int64 fields need 8-byte alignment)
|
||||
currentInputBufferSize int64 // Current input buffer size (atomic)
|
||||
currentOutputBufferSize int64 // Current output buffer size (atomic)
|
||||
averageLatency int64 // Average latency in nanoseconds (atomic)
|
||||
systemCPUPercent int64 // System CPU percentage * 100 (atomic)
|
||||
systemMemoryPercent int64 // System memory percentage * 100 (atomic)
|
||||
adaptationCount int64 // Metrics tracking (atomic)
|
||||
|
||||
averageLatency int64 // Average latency in nanoseconds (atomic)
|
||||
systemCPUPercent int64 // System CPU percentage * 100 (atomic)
|
||||
systemMemoryPercent int64 // System memory percentage * 100 (atomic)
|
||||
adaptationCount int64 // Metrics tracking (atomic)
|
||||
|
||||
config AdaptiveBufferConfig
|
||||
logger zerolog.Logger
|
||||
processMonitor *ProcessMonitor
|
||||
|
||||
|
||||
// Control channels
|
||||
ctx context.Context
|
||||
cancel context.CancelFunc
|
||||
wg sync.WaitGroup
|
||||
|
||||
|
||||
// Metrics tracking
|
||||
lastAdaptation time.Time
|
||||
lastAdaptation time.Time
|
||||
mutex sync.RWMutex
|
||||
}
|
||||
|
||||
// NewAdaptiveBufferManager creates a new adaptive buffer manager
|
||||
func NewAdaptiveBufferManager(config AdaptiveBufferConfig) *AdaptiveBufferManager {
|
||||
ctx, cancel := context.WithCancel(context.Background())
|
||||
|
||||
|
||||
return &AdaptiveBufferManager{
|
||||
currentInputBufferSize: int64(config.DefaultBufferSize),
|
||||
currentOutputBufferSize: int64(config.DefaultBufferSize),
|
||||
config: config,
|
||||
logger: logging.GetDefaultLogger().With().Str("component", "adaptive-buffer").Logger(),
|
||||
processMonitor: GetProcessMonitor(),
|
||||
ctx: ctx,
|
||||
cancel: cancel,
|
||||
lastAdaptation: time.Now(),
|
||||
config: config,
|
||||
logger: logging.GetDefaultLogger().With().Str("component", "adaptive-buffer").Logger(),
|
||||
processMonitor: GetProcessMonitor(),
|
||||
ctx: ctx,
|
||||
cancel: cancel,
|
||||
lastAdaptation: time.Now(),
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -128,7 +128,7 @@ func (abm *AdaptiveBufferManager) UpdateLatency(latency time.Duration) {
|
|||
// Use exponential moving average for latency
|
||||
currentAvg := atomic.LoadInt64(&abm.averageLatency)
|
||||
newLatency := latency.Nanoseconds()
|
||||
|
||||
|
||||
if currentAvg == 0 {
|
||||
atomic.StoreInt64(&abm.averageLatency, newLatency)
|
||||
} else {
|
||||
|
@ -141,10 +141,10 @@ func (abm *AdaptiveBufferManager) UpdateLatency(latency time.Duration) {
|
|||
// adaptationLoop is the main loop that adjusts buffer sizes
|
||||
func (abm *AdaptiveBufferManager) adaptationLoop() {
|
||||
defer abm.wg.Done()
|
||||
|
||||
|
||||
ticker := time.NewTicker(abm.config.AdaptationInterval)
|
||||
defer ticker.Stop()
|
||||
|
||||
|
||||
for {
|
||||
select {
|
||||
case <-abm.ctx.Done():
|
||||
|
@ -162,61 +162,61 @@ func (abm *AdaptiveBufferManager) adaptBufferSizes() {
|
|||
if len(metrics) == 0 {
|
||||
return // No metrics available
|
||||
}
|
||||
|
||||
|
||||
// Calculate system-wide CPU and memory usage
|
||||
totalCPU := 0.0
|
||||
totalMemory := 0.0
|
||||
processCount := 0
|
||||
|
||||
|
||||
for _, metric := range metrics {
|
||||
totalCPU += metric.CPUPercent
|
||||
totalMemory += metric.MemoryPercent
|
||||
processCount++
|
||||
}
|
||||
|
||||
|
||||
if processCount == 0 {
|
||||
return
|
||||
}
|
||||
|
||||
|
||||
// Store system metrics atomically
|
||||
systemCPU := totalCPU // Total CPU across all monitored processes
|
||||
systemCPU := totalCPU // Total CPU across all monitored processes
|
||||
systemMemory := totalMemory / float64(processCount) // Average memory usage
|
||||
|
||||
|
||||
atomic.StoreInt64(&abm.systemCPUPercent, int64(systemCPU*100))
|
||||
atomic.StoreInt64(&abm.systemMemoryPercent, int64(systemMemory*100))
|
||||
|
||||
|
||||
// Get current latency
|
||||
currentLatencyNs := atomic.LoadInt64(&abm.averageLatency)
|
||||
currentLatency := time.Duration(currentLatencyNs)
|
||||
|
||||
|
||||
// Calculate adaptation factors
|
||||
cpuFactor := abm.calculateCPUFactor(systemCPU)
|
||||
memoryFactor := abm.calculateMemoryFactor(systemMemory)
|
||||
latencyFactor := abm.calculateLatencyFactor(currentLatency)
|
||||
|
||||
|
||||
// Combine factors with weights (CPU has highest priority for KVM coexistence)
|
||||
combinedFactor := 0.5*cpuFactor + 0.3*memoryFactor + 0.2*latencyFactor
|
||||
|
||||
|
||||
// Apply adaptation with smoothing
|
||||
currentInput := float64(atomic.LoadInt64(&abm.currentInputBufferSize))
|
||||
currentOutput := float64(atomic.LoadInt64(&abm.currentOutputBufferSize))
|
||||
|
||||
|
||||
// Calculate new buffer sizes
|
||||
newInputSize := abm.applyAdaptation(currentInput, combinedFactor)
|
||||
newOutputSize := abm.applyAdaptation(currentOutput, combinedFactor)
|
||||
|
||||
|
||||
// Update buffer sizes if they changed significantly
|
||||
adjustmentMade := false
|
||||
if math.Abs(newInputSize-currentInput) >= 0.5 || math.Abs(newOutputSize-currentOutput) >= 0.5 {
|
||||
atomic.StoreInt64(&abm.currentInputBufferSize, int64(math.Round(newInputSize)))
|
||||
atomic.StoreInt64(&abm.currentOutputBufferSize, int64(math.Round(newOutputSize)))
|
||||
|
||||
|
||||
atomic.AddInt64(&abm.adaptationCount, 1)
|
||||
abm.mutex.Lock()
|
||||
abm.lastAdaptation = time.Now()
|
||||
abm.mutex.Unlock()
|
||||
adjustmentMade = true
|
||||
|
||||
|
||||
abm.logger.Debug().
|
||||
Float64("cpu_percent", systemCPU).
|
||||
Float64("memory_percent", systemMemory).
|
||||
|
@ -226,7 +226,7 @@ func (abm *AdaptiveBufferManager) adaptBufferSizes() {
|
|||
Int("new_output_size", int(newOutputSize)).
|
||||
Msg("Adapted buffer sizes")
|
||||
}
|
||||
|
||||
|
||||
// Update metrics with current state
|
||||
currentInputSize := int(atomic.LoadInt64(&abm.currentInputBufferSize))
|
||||
currentOutputSize := int(atomic.LoadInt64(&abm.currentOutputBufferSize))
|
||||
|
@ -287,12 +287,12 @@ func (abm *AdaptiveBufferManager) applyAdaptation(currentSize, factor float64) f
|
|||
// Decrease towards min
|
||||
targetSize = currentSize + factor*(currentSize-float64(abm.config.MinBufferSize))
|
||||
}
|
||||
|
||||
|
||||
// Apply smoothing
|
||||
newSize := currentSize + abm.config.SmoothingFactor*(targetSize-currentSize)
|
||||
|
||||
|
||||
// Clamp to valid range
|
||||
return math.Max(float64(abm.config.MinBufferSize),
|
||||
return math.Max(float64(abm.config.MinBufferSize),
|
||||
math.Min(float64(abm.config.MaxBufferSize), newSize))
|
||||
}
|
||||
|
||||
|
@ -301,15 +301,15 @@ func (abm *AdaptiveBufferManager) GetStats() map[string]interface{} {
|
|||
abm.mutex.RLock()
|
||||
lastAdaptation := abm.lastAdaptation
|
||||
abm.mutex.RUnlock()
|
||||
|
||||
|
||||
return map[string]interface{}{
|
||||
"input_buffer_size": abm.GetInputBufferSize(),
|
||||
"output_buffer_size": abm.GetOutputBufferSize(),
|
||||
"average_latency_ms": float64(atomic.LoadInt64(&abm.averageLatency)) / 1e6,
|
||||
"system_cpu_percent": float64(atomic.LoadInt64(&abm.systemCPUPercent)) / 100,
|
||||
"input_buffer_size": abm.GetInputBufferSize(),
|
||||
"output_buffer_size": abm.GetOutputBufferSize(),
|
||||
"average_latency_ms": float64(atomic.LoadInt64(&abm.averageLatency)) / 1e6,
|
||||
"system_cpu_percent": float64(atomic.LoadInt64(&abm.systemCPUPercent)) / 100,
|
||||
"system_memory_percent": float64(atomic.LoadInt64(&abm.systemMemoryPercent)) / 100,
|
||||
"adaptation_count": atomic.LoadInt64(&abm.adaptationCount),
|
||||
"last_adaptation": lastAdaptation,
|
||||
"adaptation_count": atomic.LoadInt64(&abm.adaptationCount),
|
||||
"last_adaptation": lastAdaptation,
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -335,4 +335,4 @@ func StopAdaptiveBuffering() {
|
|||
if globalAdaptiveBufferManager != nil {
|
||||
globalAdaptiveBufferManager.Stop()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -15,47 +15,44 @@ type AdaptiveOptimizer struct {
|
|||
optimizationCount int64 // Number of optimizations performed (atomic)
|
||||
lastOptimization int64 // Timestamp of last optimization (atomic)
|
||||
optimizationLevel int64 // Current optimization level (0-10) (atomic)
|
||||
|
||||
|
||||
latencyMonitor *LatencyMonitor
|
||||
bufferManager *AdaptiveBufferManager
|
||||
logger zerolog.Logger
|
||||
|
||||
|
||||
// Control channels
|
||||
ctx context.Context
|
||||
cancel context.CancelFunc
|
||||
wg sync.WaitGroup
|
||||
|
||||
|
||||
// Configuration
|
||||
config OptimizerConfig
|
||||
mutex sync.RWMutex
|
||||
}
|
||||
|
||||
// OptimizerConfig holds configuration for the adaptive optimizer
|
||||
type OptimizerConfig struct {
|
||||
MaxOptimizationLevel int // Maximum optimization level (0-10)
|
||||
CooldownPeriod time.Duration // Minimum time between optimizations
|
||||
Aggressiveness float64 // How aggressively to optimize (0.0-1.0)
|
||||
RollbackThreshold time.Duration // Latency threshold to rollback optimizations
|
||||
StabilityPeriod time.Duration // Time to wait for stability after optimization
|
||||
CooldownPeriod time.Duration // Minimum time between optimizations
|
||||
Aggressiveness float64 // How aggressively to optimize (0.0-1.0)
|
||||
RollbackThreshold time.Duration // Latency threshold to rollback optimizations
|
||||
StabilityPeriod time.Duration // Time to wait for stability after optimization
|
||||
}
|
||||
|
||||
|
||||
|
||||
// DefaultOptimizerConfig returns a sensible default configuration
|
||||
func DefaultOptimizerConfig() OptimizerConfig {
|
||||
return OptimizerConfig{
|
||||
MaxOptimizationLevel: 8,
|
||||
CooldownPeriod: 30 * time.Second,
|
||||
Aggressiveness: 0.7,
|
||||
RollbackThreshold: 300 * time.Millisecond,
|
||||
StabilityPeriod: 10 * time.Second,
|
||||
CooldownPeriod: 30 * time.Second,
|
||||
Aggressiveness: 0.7,
|
||||
RollbackThreshold: 300 * time.Millisecond,
|
||||
StabilityPeriod: 10 * time.Second,
|
||||
}
|
||||
}
|
||||
|
||||
// NewAdaptiveOptimizer creates a new adaptive optimizer
|
||||
func NewAdaptiveOptimizer(latencyMonitor *LatencyMonitor, bufferManager *AdaptiveBufferManager, config OptimizerConfig, logger zerolog.Logger) *AdaptiveOptimizer {
|
||||
ctx, cancel := context.WithCancel(context.Background())
|
||||
|
||||
|
||||
optimizer := &AdaptiveOptimizer{
|
||||
latencyMonitor: latencyMonitor,
|
||||
bufferManager: bufferManager,
|
||||
|
@ -64,12 +61,10 @@ func NewAdaptiveOptimizer(latencyMonitor *LatencyMonitor, bufferManager *Adaptiv
|
|||
ctx: ctx,
|
||||
cancel: cancel,
|
||||
}
|
||||
|
||||
|
||||
|
||||
// Register as latency monitor callback
|
||||
latencyMonitor.AddOptimizationCallback(optimizer.handleLatencyOptimization)
|
||||
|
||||
|
||||
return optimizer
|
||||
}
|
||||
|
||||
|
@ -89,26 +84,25 @@ func (ao *AdaptiveOptimizer) Stop() {
|
|||
|
||||
// initializeStrategies sets up the available optimization strategies
|
||||
|
||||
|
||||
// handleLatencyOptimization is called when latency optimization is needed
|
||||
func (ao *AdaptiveOptimizer) handleLatencyOptimization(metrics LatencyMetrics) error {
|
||||
currentLevel := atomic.LoadInt64(&ao.optimizationLevel)
|
||||
lastOpt := atomic.LoadInt64(&ao.lastOptimization)
|
||||
|
||||
|
||||
// Check cooldown period
|
||||
if time.Since(time.Unix(0, lastOpt)) < ao.config.CooldownPeriod {
|
||||
return nil
|
||||
}
|
||||
|
||||
|
||||
// Determine if we need to increase or decrease optimization level
|
||||
targetLevel := ao.calculateTargetOptimizationLevel(metrics)
|
||||
|
||||
|
||||
if targetLevel > currentLevel {
|
||||
return ao.increaseOptimization(int(targetLevel))
|
||||
} else if targetLevel < currentLevel {
|
||||
return ao.decreaseOptimization(int(targetLevel))
|
||||
}
|
||||
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
|
@ -116,7 +110,7 @@ func (ao *AdaptiveOptimizer) handleLatencyOptimization(metrics LatencyMetrics) e
|
|||
func (ao *AdaptiveOptimizer) calculateTargetOptimizationLevel(metrics LatencyMetrics) int64 {
|
||||
// Base calculation on current latency vs target
|
||||
latencyRatio := float64(metrics.Current) / float64(50*time.Millisecond) // 50ms target
|
||||
|
||||
|
||||
// Adjust based on trend
|
||||
switch metrics.Trend {
|
||||
case LatencyTrendIncreasing:
|
||||
|
@ -126,10 +120,10 @@ func (ao *AdaptiveOptimizer) calculateTargetOptimizationLevel(metrics LatencyMet
|
|||
case LatencyTrendVolatile:
|
||||
latencyRatio *= 1.1 // Slightly more aggressive
|
||||
}
|
||||
|
||||
|
||||
// Apply aggressiveness factor
|
||||
latencyRatio *= ao.config.Aggressiveness
|
||||
|
||||
|
||||
// Convert to optimization level
|
||||
targetLevel := int64(latencyRatio * 2) // Scale to 0-10 range
|
||||
if targetLevel > int64(ao.config.MaxOptimizationLevel) {
|
||||
|
@ -138,7 +132,7 @@ func (ao *AdaptiveOptimizer) calculateTargetOptimizationLevel(metrics LatencyMet
|
|||
if targetLevel < 0 {
|
||||
targetLevel = 0
|
||||
}
|
||||
|
||||
|
||||
return targetLevel
|
||||
}
|
||||
|
||||
|
@ -147,7 +141,7 @@ func (ao *AdaptiveOptimizer) increaseOptimization(targetLevel int) error {
|
|||
atomic.StoreInt64(&ao.optimizationLevel, int64(targetLevel))
|
||||
atomic.StoreInt64(&ao.lastOptimization, time.Now().UnixNano())
|
||||
atomic.AddInt64(&ao.optimizationCount, 1)
|
||||
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
|
@ -155,17 +149,17 @@ func (ao *AdaptiveOptimizer) increaseOptimization(targetLevel int) error {
|
|||
func (ao *AdaptiveOptimizer) decreaseOptimization(targetLevel int) error {
|
||||
atomic.StoreInt64(&ao.optimizationLevel, int64(targetLevel))
|
||||
atomic.StoreInt64(&ao.lastOptimization, time.Now().UnixNano())
|
||||
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
// optimizationLoop runs the main optimization monitoring loop
|
||||
func (ao *AdaptiveOptimizer) optimizationLoop() {
|
||||
defer ao.wg.Done()
|
||||
|
||||
|
||||
ticker := time.NewTicker(ao.config.StabilityPeriod)
|
||||
defer ticker.Stop()
|
||||
|
||||
|
||||
for {
|
||||
select {
|
||||
case <-ao.ctx.Done():
|
||||
|
@ -179,13 +173,15 @@ func (ao *AdaptiveOptimizer) optimizationLoop() {
|
|||
// checkStability monitors system stability and rolls back if needed
|
||||
func (ao *AdaptiveOptimizer) checkStability() {
|
||||
metrics := ao.latencyMonitor.GetMetrics()
|
||||
|
||||
|
||||
// Check if we need to rollback due to excessive latency
|
||||
if metrics.Current > ao.config.RollbackThreshold {
|
||||
currentLevel := int(atomic.LoadInt64(&ao.optimizationLevel))
|
||||
if currentLevel > 0 {
|
||||
ao.logger.Warn().Dur("current_latency", metrics.Current).Dur("threshold", ao.config.RollbackThreshold).Msg("Rolling back optimizations due to excessive latency")
|
||||
ao.decreaseOptimization(currentLevel - 1)
|
||||
if err := ao.decreaseOptimization(currentLevel - 1); err != nil {
|
||||
ao.logger.Error().Err(err).Msg("Failed to decrease optimization level")
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -199,4 +195,4 @@ func (ao *AdaptiveOptimizer) GetOptimizationStats() map[string]interface{} {
|
|||
}
|
||||
}
|
||||
|
||||
// Strategy implementation methods (stubs for now)
|
||||
// Strategy implementation methods (stubs for now)
|
||||
|
|
|
@ -199,12 +199,12 @@ func (bap *BatchAudioProcessor) processBatchRead(batch []batchReadRequest) {
|
|||
start := time.Now()
|
||||
if atomic.CompareAndSwapInt32(&bap.threadPinned, 0, 1) {
|
||||
runtime.LockOSThread()
|
||||
|
||||
|
||||
// Set high priority for batch audio processing
|
||||
if err := SetAudioThreadPriority(); err != nil {
|
||||
bap.logger.Warn().Err(err).Msg("Failed to set batch audio processing priority")
|
||||
}
|
||||
|
||||
|
||||
defer func() {
|
||||
if err := ResetThreadPriority(); err != nil {
|
||||
bap.logger.Warn().Err(err).Msg("Failed to reset thread priority")
|
||||
|
|
|
@ -7,15 +7,15 @@ import (
|
|||
|
||||
type AudioBufferPool struct {
|
||||
// Atomic fields MUST be first for ARM32 alignment (int64 fields need 8-byte alignment)
|
||||
currentSize int64 // Current pool size (atomic)
|
||||
hitCount int64 // Pool hit counter (atomic)
|
||||
missCount int64 // Pool miss counter (atomic)
|
||||
|
||||
currentSize int64 // Current pool size (atomic)
|
||||
hitCount int64 // Pool hit counter (atomic)
|
||||
missCount int64 // Pool miss counter (atomic)
|
||||
|
||||
// Other fields
|
||||
pool sync.Pool
|
||||
bufferSize int
|
||||
maxPoolSize int
|
||||
mutex sync.RWMutex
|
||||
pool sync.Pool
|
||||
bufferSize int
|
||||
maxPoolSize int
|
||||
mutex sync.RWMutex
|
||||
// Memory optimization fields
|
||||
preallocated []*[]byte // Pre-allocated buffers for immediate use
|
||||
preallocSize int // Number of pre-allocated buffers
|
||||
|
@ -25,16 +25,16 @@ func NewAudioBufferPool(bufferSize int) *AudioBufferPool {
|
|||
// Pre-allocate 20% of max pool size for immediate availability
|
||||
preallocSize := 20
|
||||
preallocated := make([]*[]byte, 0, preallocSize)
|
||||
|
||||
|
||||
// Pre-allocate buffers to reduce initial allocation overhead
|
||||
for i := 0; i < preallocSize; i++ {
|
||||
buf := make([]byte, 0, bufferSize)
|
||||
preallocated = append(preallocated, &buf)
|
||||
}
|
||||
|
||||
|
||||
return &AudioBufferPool{
|
||||
bufferSize: bufferSize,
|
||||
maxPoolSize: 100, // Limit pool size to prevent excessive memory usage
|
||||
bufferSize: bufferSize,
|
||||
maxPoolSize: 100, // Limit pool size to prevent excessive memory usage
|
||||
preallocated: preallocated,
|
||||
preallocSize: preallocSize,
|
||||
pool: sync.Pool{
|
||||
|
@ -56,10 +56,10 @@ func (p *AudioBufferPool) Get() []byte {
|
|||
return (*buf)[:0] // Reset length but keep capacity
|
||||
}
|
||||
p.mutex.Unlock()
|
||||
|
||||
|
||||
// Try sync.Pool next
|
||||
if buf := p.pool.Get(); buf != nil {
|
||||
bufSlice := buf.([]byte)
|
||||
bufPtr := buf.(*[]byte)
|
||||
// Update pool size counter when retrieving from pool
|
||||
p.mutex.Lock()
|
||||
if p.currentSize > 0 {
|
||||
|
@ -67,9 +67,9 @@ func (p *AudioBufferPool) Get() []byte {
|
|||
}
|
||||
p.mutex.Unlock()
|
||||
atomic.AddInt64(&p.hitCount, 1)
|
||||
return bufSlice[:0] // Reset length but keep capacity
|
||||
return (*bufPtr)[:0] // Reset length but keep capacity
|
||||
}
|
||||
|
||||
|
||||
// Last resort: allocate new buffer
|
||||
atomic.AddInt64(&p.missCount, 1)
|
||||
return make([]byte, 0, p.bufferSize)
|
||||
|
@ -82,7 +82,7 @@ func (p *AudioBufferPool) Put(buf []byte) {
|
|||
|
||||
// Reset buffer for reuse
|
||||
resetBuf := buf[:0]
|
||||
|
||||
|
||||
// First try to return to pre-allocated pool for fastest reuse
|
||||
p.mutex.Lock()
|
||||
if len(p.preallocated) < p.preallocSize {
|
||||
|
@ -102,7 +102,7 @@ func (p *AudioBufferPool) Put(buf []byte) {
|
|||
}
|
||||
|
||||
// Return to sync.Pool
|
||||
p.pool.Put(resetBuf)
|
||||
p.pool.Put(&resetBuf)
|
||||
|
||||
// Update pool size counter
|
||||
p.mutex.Lock()
|
||||
|
@ -137,16 +137,16 @@ func (p *AudioBufferPool) GetPoolStats() AudioBufferPoolDetailedStats {
|
|||
preallocatedCount := len(p.preallocated)
|
||||
currentSize := p.currentSize
|
||||
p.mutex.RUnlock()
|
||||
|
||||
|
||||
hitCount := atomic.LoadInt64(&p.hitCount)
|
||||
missCount := atomic.LoadInt64(&p.missCount)
|
||||
totalRequests := hitCount + missCount
|
||||
|
||||
|
||||
var hitRate float64
|
||||
if totalRequests > 0 {
|
||||
hitRate = float64(hitCount) / float64(totalRequests) * 100
|
||||
}
|
||||
|
||||
|
||||
return AudioBufferPoolDetailedStats{
|
||||
BufferSize: p.bufferSize,
|
||||
MaxPoolSize: p.maxPoolSize,
|
||||
|
@ -173,15 +173,15 @@ type AudioBufferPoolDetailedStats struct {
|
|||
|
||||
// GetAudioBufferPoolStats returns statistics about the audio buffer pools
|
||||
type AudioBufferPoolStats struct {
|
||||
FramePoolSize int64
|
||||
FramePoolMax int
|
||||
ControlPoolSize int64
|
||||
ControlPoolMax int
|
||||
FramePoolSize int64
|
||||
FramePoolMax int
|
||||
ControlPoolSize int64
|
||||
ControlPoolMax int
|
||||
// Enhanced statistics
|
||||
FramePoolHitRate float64
|
||||
ControlPoolHitRate float64
|
||||
FramePoolDetails AudioBufferPoolDetailedStats
|
||||
ControlPoolDetails AudioBufferPoolDetailedStats
|
||||
FramePoolHitRate float64
|
||||
ControlPoolHitRate float64
|
||||
FramePoolDetails AudioBufferPoolDetailedStats
|
||||
ControlPoolDetails AudioBufferPoolDetailedStats
|
||||
}
|
||||
|
||||
func GetAudioBufferPoolStats() AudioBufferPoolStats {
|
||||
|
@ -194,19 +194,19 @@ func GetAudioBufferPoolStats() AudioBufferPoolStats {
|
|||
controlSize := audioControlPool.currentSize
|
||||
controlMax := audioControlPool.maxPoolSize
|
||||
audioControlPool.mutex.RUnlock()
|
||||
|
||||
|
||||
// Get detailed statistics
|
||||
frameDetails := audioFramePool.GetPoolStats()
|
||||
controlDetails := audioControlPool.GetPoolStats()
|
||||
|
||||
return AudioBufferPoolStats{
|
||||
FramePoolSize: frameSize,
|
||||
FramePoolMax: frameMax,
|
||||
ControlPoolSize: controlSize,
|
||||
ControlPoolMax: controlMax,
|
||||
FramePoolHitRate: frameDetails.HitRate,
|
||||
ControlPoolHitRate: controlDetails.HitRate,
|
||||
FramePoolDetails: frameDetails,
|
||||
ControlPoolDetails: controlDetails,
|
||||
FramePoolSize: frameSize,
|
||||
FramePoolMax: frameMax,
|
||||
ControlPoolSize: controlSize,
|
||||
ControlPoolMax: controlMax,
|
||||
FramePoolHitRate: frameDetails.HitRate,
|
||||
ControlPoolHitRate: controlDetails.HitRate,
|
||||
FramePoolDetails: frameDetails,
|
||||
ControlPoolDetails: controlDetails,
|
||||
}
|
||||
}
|
||||
|
|
|
@ -49,18 +49,18 @@ type InputIPCMessage struct {
|
|||
// OptimizedIPCMessage represents an optimized message with pre-allocated buffers
|
||||
type OptimizedIPCMessage struct {
|
||||
header [headerSize]byte // Pre-allocated header buffer
|
||||
data []byte // Reusable data buffer
|
||||
msg InputIPCMessage // Embedded message
|
||||
data []byte // Reusable data buffer
|
||||
msg InputIPCMessage // Embedded message
|
||||
}
|
||||
|
||||
// MessagePool manages a pool of reusable messages to reduce allocations
|
||||
type MessagePool struct {
|
||||
// Atomic fields MUST be first for ARM32 alignment (int64 fields need 8-byte alignment)
|
||||
hitCount int64 // Pool hit counter (atomic)
|
||||
missCount int64 // Pool miss counter (atomic)
|
||||
|
||||
hitCount int64 // Pool hit counter (atomic)
|
||||
missCount int64 // Pool miss counter (atomic)
|
||||
|
||||
// Other fields
|
||||
pool chan *OptimizedIPCMessage
|
||||
pool chan *OptimizedIPCMessage
|
||||
// Memory optimization fields
|
||||
preallocated []*OptimizedIPCMessage // Pre-allocated messages for immediate use
|
||||
preallocSize int // Number of pre-allocated messages
|
||||
|
@ -73,32 +73,37 @@ var globalMessagePool = &MessagePool{
|
|||
pool: make(chan *OptimizedIPCMessage, messagePoolSize),
|
||||
}
|
||||
|
||||
// Initialize the message pool with pre-allocated messages
|
||||
func init() {
|
||||
// Pre-allocate 30% of pool size for immediate availability
|
||||
preallocSize := messagePoolSize * 30 / 100
|
||||
globalMessagePool.preallocSize = preallocSize
|
||||
globalMessagePool.maxPoolSize = messagePoolSize * 2 // Allow growth up to 2x
|
||||
globalMessagePool.preallocated = make([]*OptimizedIPCMessage, 0, preallocSize)
|
||||
|
||||
// Pre-allocate messages to reduce initial allocation overhead
|
||||
for i := 0; i < preallocSize; i++ {
|
||||
msg := &OptimizedIPCMessage{
|
||||
data: make([]byte, 0, maxFrameSize),
|
||||
var messagePoolInitOnce sync.Once
|
||||
|
||||
// initializeMessagePool initializes the message pool with pre-allocated messages
|
||||
func initializeMessagePool() {
|
||||
messagePoolInitOnce.Do(func() {
|
||||
// Pre-allocate 30% of pool size for immediate availability
|
||||
preallocSize := messagePoolSize * 30 / 100
|
||||
globalMessagePool.preallocSize = preallocSize
|
||||
globalMessagePool.maxPoolSize = messagePoolSize * 2 // Allow growth up to 2x
|
||||
globalMessagePool.preallocated = make([]*OptimizedIPCMessage, 0, preallocSize)
|
||||
|
||||
// Pre-allocate messages to reduce initial allocation overhead
|
||||
for i := 0; i < preallocSize; i++ {
|
||||
msg := &OptimizedIPCMessage{
|
||||
data: make([]byte, 0, maxFrameSize),
|
||||
}
|
||||
globalMessagePool.preallocated = append(globalMessagePool.preallocated, msg)
|
||||
}
|
||||
globalMessagePool.preallocated = append(globalMessagePool.preallocated, msg)
|
||||
}
|
||||
|
||||
// Fill the channel pool with remaining messages
|
||||
for i := preallocSize; i < messagePoolSize; i++ {
|
||||
globalMessagePool.pool <- &OptimizedIPCMessage{
|
||||
data: make([]byte, 0, maxFrameSize),
|
||||
|
||||
// Fill the channel pool with remaining messages
|
||||
for i := preallocSize; i < messagePoolSize; i++ {
|
||||
globalMessagePool.pool <- &OptimizedIPCMessage{
|
||||
data: make([]byte, 0, maxFrameSize),
|
||||
}
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
// Get retrieves a message from the pool
|
||||
func (mp *MessagePool) Get() *OptimizedIPCMessage {
|
||||
initializeMessagePool()
|
||||
// First try pre-allocated messages for fastest access
|
||||
mp.mutex.Lock()
|
||||
if len(mp.preallocated) > 0 {
|
||||
|
@ -109,7 +114,7 @@ func (mp *MessagePool) Get() *OptimizedIPCMessage {
|
|||
return msg
|
||||
}
|
||||
mp.mutex.Unlock()
|
||||
|
||||
|
||||
// Try channel pool next
|
||||
select {
|
||||
case msg := <-mp.pool:
|
||||
|
@ -129,7 +134,7 @@ func (mp *MessagePool) Put(msg *OptimizedIPCMessage) {
|
|||
// Reset the message for reuse
|
||||
msg.data = msg.data[:0]
|
||||
msg.msg = InputIPCMessage{}
|
||||
|
||||
|
||||
// First try to return to pre-allocated pool for fastest reuse
|
||||
mp.mutex.Lock()
|
||||
if len(mp.preallocated) < mp.preallocSize {
|
||||
|
@ -138,7 +143,7 @@ func (mp *MessagePool) Put(msg *OptimizedIPCMessage) {
|
|||
return
|
||||
}
|
||||
mp.mutex.Unlock()
|
||||
|
||||
|
||||
// Try channel pool next
|
||||
select {
|
||||
case mp.pool <- msg:
|
||||
|
@ -335,7 +340,7 @@ func (ais *AudioInputServer) readMessage(conn net.Conn) (*InputIPCMessage, error
|
|||
} else {
|
||||
optMsg.data = optMsg.data[:msg.Length]
|
||||
}
|
||||
|
||||
|
||||
_, err = io.ReadFull(conn, optMsg.data)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
|
@ -350,7 +355,7 @@ func (ais *AudioInputServer) readMessage(conn net.Conn) (*InputIPCMessage, error
|
|||
Length: msg.Length,
|
||||
Timestamp: msg.Timestamp,
|
||||
}
|
||||
|
||||
|
||||
if msg.Length > 0 {
|
||||
// Copy data to ensure it's not affected by buffer reuse
|
||||
result.Data = make([]byte, msg.Length)
|
||||
|
@ -733,7 +738,7 @@ func (ais *AudioInputServer) startProcessorGoroutine() {
|
|||
go func() {
|
||||
runtime.LockOSThread()
|
||||
defer runtime.UnlockOSThread()
|
||||
|
||||
|
||||
// Set high priority for audio processing
|
||||
logger := logging.GetDefaultLogger().With().Str("component", "audio-input-processor").Logger()
|
||||
if err := SetAudioThreadPriority(); err != nil {
|
||||
|
@ -744,7 +749,7 @@ func (ais *AudioInputServer) startProcessorGoroutine() {
|
|||
logger.Warn().Err(err).Msg("Failed to reset thread priority")
|
||||
}
|
||||
}()
|
||||
|
||||
|
||||
defer ais.wg.Done()
|
||||
for {
|
||||
select {
|
||||
|
@ -785,7 +790,7 @@ func (ais *AudioInputServer) startMonitorGoroutine() {
|
|||
go func() {
|
||||
runtime.LockOSThread()
|
||||
defer runtime.UnlockOSThread()
|
||||
|
||||
|
||||
// Set I/O priority for monitoring
|
||||
logger := logging.GetDefaultLogger().With().Str("component", "audio-input-monitor").Logger()
|
||||
if err := SetAudioIOThreadPriority(); err != nil {
|
||||
|
@ -796,11 +801,11 @@ func (ais *AudioInputServer) startMonitorGoroutine() {
|
|||
logger.Warn().Err(err).Msg("Failed to reset thread priority")
|
||||
}
|
||||
}()
|
||||
|
||||
|
||||
defer ais.wg.Done()
|
||||
ticker := time.NewTicker(100 * time.Millisecond)
|
||||
defer ticker.Stop()
|
||||
|
||||
|
||||
// Buffer size update ticker (less frequent)
|
||||
bufferUpdateTicker := time.NewTicker(500 * time.Millisecond)
|
||||
defer bufferUpdateTicker.Stop()
|
||||
|
@ -835,7 +840,7 @@ func (ais *AudioInputServer) startMonitorGoroutine() {
|
|||
newAvg := (currentAvg + processingTime.Nanoseconds()) / 2
|
||||
atomic.StoreInt64(&ais.processingTime, newAvg)
|
||||
}
|
||||
|
||||
|
||||
// Report latency to adaptive buffer manager
|
||||
ais.ReportLatency(latency)
|
||||
|
||||
|
@ -847,7 +852,7 @@ func (ais *AudioInputServer) startMonitorGoroutine() {
|
|||
goto checkBufferUpdate
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
checkBufferUpdate:
|
||||
// Check if we need to update buffer size
|
||||
select {
|
||||
|
@ -888,19 +893,19 @@ func (mp *MessagePool) GetMessagePoolStats() MessagePoolStats {
|
|||
mp.mutex.RLock()
|
||||
preallocatedCount := len(mp.preallocated)
|
||||
mp.mutex.RUnlock()
|
||||
|
||||
|
||||
hitCount := atomic.LoadInt64(&mp.hitCount)
|
||||
missCount := atomic.LoadInt64(&mp.missCount)
|
||||
totalRequests := hitCount + missCount
|
||||
|
||||
|
||||
var hitRate float64
|
||||
if totalRequests > 0 {
|
||||
hitRate = float64(hitCount) / float64(totalRequests) * 100
|
||||
}
|
||||
|
||||
|
||||
// Calculate channel pool size
|
||||
channelPoolSize := len(mp.pool)
|
||||
|
||||
|
||||
return MessagePoolStats{
|
||||
MaxPoolSize: mp.maxPoolSize,
|
||||
ChannelPoolSize: channelPoolSize,
|
||||
|
|
|
@ -11,18 +11,18 @@ import (
|
|||
"sync"
|
||||
"sync/atomic"
|
||||
"time"
|
||||
|
||||
|
||||
"github.com/rs/zerolog"
|
||||
)
|
||||
|
||||
const (
|
||||
outputMagicNumber uint32 = 0x4A4B4F55 // "JKOU" (JetKVM Output)
|
||||
outputSocketName = "audio_output.sock"
|
||||
outputMaxFrameSize = 4096 // Maximum Opus frame size
|
||||
outputWriteTimeout = 10 * time.Millisecond // Non-blocking write timeout (increased for high load)
|
||||
outputMaxDroppedFrames = 50 // Maximum consecutive dropped frames
|
||||
outputHeaderSize = 17 // Fixed header size: 4+1+4+8 bytes
|
||||
outputMessagePoolSize = 128 // Pre-allocated message pool size
|
||||
outputMagicNumber uint32 = 0x4A4B4F55 // "JKOU" (JetKVM Output)
|
||||
outputSocketName = "audio_output.sock"
|
||||
outputMaxFrameSize = 4096 // Maximum Opus frame size
|
||||
outputWriteTimeout = 10 * time.Millisecond // Non-blocking write timeout (increased for high load)
|
||||
outputMaxDroppedFrames = 50 // Maximum consecutive dropped frames
|
||||
outputHeaderSize = 17 // Fixed header size: 4+1+4+8 bytes
|
||||
outputMessagePoolSize = 128 // Pre-allocated message pool size
|
||||
)
|
||||
|
||||
// OutputMessageType represents the type of IPC message
|
||||
|
@ -61,7 +61,7 @@ func NewOutputMessagePool(size int) *OutputMessagePool {
|
|||
pool := &OutputMessagePool{
|
||||
pool: make(chan *OutputOptimizedMessage, size),
|
||||
}
|
||||
|
||||
|
||||
// Pre-allocate messages
|
||||
for i := 0; i < size; i++ {
|
||||
msg := &OutputOptimizedMessage{
|
||||
|
@ -69,7 +69,7 @@ func NewOutputMessagePool(size int) *OutputMessagePool {
|
|||
}
|
||||
pool.pool <- msg
|
||||
}
|
||||
|
||||
|
||||
return pool
|
||||
}
|
||||
|
||||
|
@ -101,10 +101,9 @@ var globalOutputMessagePool = NewOutputMessagePool(outputMessagePoolSize)
|
|||
|
||||
type AudioServer struct {
|
||||
// Atomic fields must be first for proper alignment on ARM
|
||||
bufferSize int64 // Current buffer size (atomic)
|
||||
processingTime int64 // Average processing time in nanoseconds (atomic)
|
||||
droppedFrames int64 // Dropped frames counter (atomic)
|
||||
totalFrames int64 // Total frames counter (atomic)
|
||||
bufferSize int64 // Current buffer size (atomic)
|
||||
droppedFrames int64 // Dropped frames counter (atomic)
|
||||
totalFrames int64 // Total frames counter (atomic)
|
||||
|
||||
listener net.Listener
|
||||
conn net.Conn
|
||||
|
@ -115,9 +114,9 @@ type AudioServer struct {
|
|||
messageChan chan *OutputIPCMessage // Buffered channel for incoming messages
|
||||
stopChan chan struct{} // Stop signal
|
||||
wg sync.WaitGroup // Wait group for goroutine coordination
|
||||
|
||||
|
||||
// Latency monitoring
|
||||
latencyMonitor *LatencyMonitor
|
||||
latencyMonitor *LatencyMonitor
|
||||
adaptiveOptimizer *AdaptiveOptimizer
|
||||
}
|
||||
|
||||
|
@ -138,11 +137,11 @@ func NewAudioServer() (*AudioServer, error) {
|
|||
latencyConfig := DefaultLatencyConfig()
|
||||
logger := zerolog.New(os.Stderr).With().Timestamp().Str("component", "audio-server").Logger()
|
||||
latencyMonitor := NewLatencyMonitor(latencyConfig, logger)
|
||||
|
||||
|
||||
// Initialize adaptive buffer manager with default config
|
||||
bufferConfig := DefaultAdaptiveBufferConfig()
|
||||
bufferManager := NewAdaptiveBufferManager(bufferConfig)
|
||||
|
||||
|
||||
// Initialize adaptive optimizer
|
||||
optimizerConfig := DefaultOptimizerConfig()
|
||||
adaptiveOptimizer := NewAdaptiveOptimizer(latencyMonitor, bufferManager, optimizerConfig, logger)
|
||||
|
@ -216,7 +215,10 @@ func (s *AudioServer) startProcessorGoroutine() {
|
|||
case msg := <-s.messageChan:
|
||||
// Process message (currently just frame sending)
|
||||
if msg.Type == OutputMessageTypeOpusFrame {
|
||||
s.sendFrameToClient(msg.Data)
|
||||
if err := s.sendFrameToClient(msg.Data); err != nil {
|
||||
// Log error but continue processing
|
||||
atomic.AddInt64(&s.droppedFrames, 1)
|
||||
}
|
||||
}
|
||||
case <-s.stopChan:
|
||||
return
|
||||
|
@ -283,13 +285,13 @@ func (s *AudioServer) SendFrame(frame []byte) error {
|
|||
select {
|
||||
case s.messageChan <- msg:
|
||||
atomic.AddInt64(&s.totalFrames, 1)
|
||||
|
||||
|
||||
// Record latency for monitoring
|
||||
if s.latencyMonitor != nil {
|
||||
processingTime := time.Since(start)
|
||||
s.latencyMonitor.RecordLatency(processingTime, "ipc_send")
|
||||
}
|
||||
|
||||
|
||||
return nil
|
||||
default:
|
||||
// Channel full, drop frame to prevent blocking
|
||||
|
|
|
@ -19,19 +19,19 @@ type LatencyMonitor struct {
|
|||
latencySamples int64 // Number of latency samples collected (atomic)
|
||||
jitterAccumulator int64 // Accumulated jitter for variance calculation (atomic)
|
||||
lastOptimization int64 // Timestamp of last optimization in nanoseconds (atomic)
|
||||
|
||||
|
||||
config LatencyConfig
|
||||
logger zerolog.Logger
|
||||
|
||||
|
||||
// Control channels
|
||||
ctx context.Context
|
||||
cancel context.CancelFunc
|
||||
wg sync.WaitGroup
|
||||
|
||||
|
||||
// Optimization callbacks
|
||||
optimizationCallbacks []OptimizationCallback
|
||||
mutex sync.RWMutex
|
||||
|
||||
mutex sync.RWMutex
|
||||
|
||||
// Performance tracking
|
||||
latencyHistory []LatencyMeasurement
|
||||
historyMutex sync.RWMutex
|
||||
|
@ -39,12 +39,12 @@ type LatencyMonitor struct {
|
|||
|
||||
// LatencyConfig holds configuration for latency monitoring
|
||||
type LatencyConfig struct {
|
||||
TargetLatency time.Duration // Target latency to maintain
|
||||
MaxLatency time.Duration // Maximum acceptable latency
|
||||
TargetLatency time.Duration // Target latency to maintain
|
||||
MaxLatency time.Duration // Maximum acceptable latency
|
||||
OptimizationInterval time.Duration // How often to run optimization
|
||||
HistorySize int // Number of latency measurements to keep
|
||||
JitterThreshold time.Duration // Jitter threshold for optimization
|
||||
AdaptiveThreshold float64 // Threshold for adaptive adjustments (0.0-1.0)
|
||||
HistorySize int // Number of latency measurements to keep
|
||||
JitterThreshold time.Duration // Jitter threshold for optimization
|
||||
AdaptiveThreshold float64 // Threshold for adaptive adjustments (0.0-1.0)
|
||||
}
|
||||
|
||||
// LatencyMeasurement represents a single latency measurement
|
||||
|
@ -83,18 +83,18 @@ const (
|
|||
func DefaultLatencyConfig() LatencyConfig {
|
||||
return LatencyConfig{
|
||||
TargetLatency: 50 * time.Millisecond,
|
||||
MaxLatency: 200 * time.Millisecond,
|
||||
MaxLatency: 200 * time.Millisecond,
|
||||
OptimizationInterval: 5 * time.Second,
|
||||
HistorySize: 100,
|
||||
JitterThreshold: 20 * time.Millisecond,
|
||||
AdaptiveThreshold: 0.8, // Trigger optimization when 80% above target
|
||||
HistorySize: 100,
|
||||
JitterThreshold: 20 * time.Millisecond,
|
||||
AdaptiveThreshold: 0.8, // Trigger optimization when 80% above target
|
||||
}
|
||||
}
|
||||
|
||||
// NewLatencyMonitor creates a new latency monitoring system
|
||||
func NewLatencyMonitor(config LatencyConfig, logger zerolog.Logger) *LatencyMonitor {
|
||||
ctx, cancel := context.WithCancel(context.Background())
|
||||
|
||||
|
||||
return &LatencyMonitor{
|
||||
config: config,
|
||||
logger: logger.With().Str("component", "latency-monitor").Logger(),
|
||||
|
@ -123,11 +123,11 @@ func (lm *LatencyMonitor) Stop() {
|
|||
func (lm *LatencyMonitor) RecordLatency(latency time.Duration, source string) {
|
||||
now := time.Now()
|
||||
latencyNanos := latency.Nanoseconds()
|
||||
|
||||
|
||||
// Update atomic counters
|
||||
atomic.StoreInt64(&lm.currentLatency, latencyNanos)
|
||||
atomic.AddInt64(&lm.latencySamples, 1)
|
||||
|
||||
|
||||
// Update min/max
|
||||
for {
|
||||
oldMin := atomic.LoadInt64(&lm.minLatency)
|
||||
|
@ -135,26 +135,26 @@ func (lm *LatencyMonitor) RecordLatency(latency time.Duration, source string) {
|
|||
break
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
for {
|
||||
oldMax := atomic.LoadInt64(&lm.maxLatency)
|
||||
if latencyNanos <= oldMax || atomic.CompareAndSwapInt64(&lm.maxLatency, oldMax, latencyNanos) {
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Update rolling average using exponential moving average
|
||||
oldAvg := atomic.LoadInt64(&lm.averageLatency)
|
||||
newAvg := oldAvg + (latencyNanos-oldAvg)/10 // Alpha = 0.1
|
||||
atomic.StoreInt64(&lm.averageLatency, newAvg)
|
||||
|
||||
|
||||
// Calculate jitter (difference from average)
|
||||
jitter := latencyNanos - newAvg
|
||||
if jitter < 0 {
|
||||
jitter = -jitter
|
||||
}
|
||||
atomic.AddInt64(&lm.jitterAccumulator, jitter)
|
||||
|
||||
|
||||
// Store in history
|
||||
lm.historyMutex.Lock()
|
||||
measurement := LatencyMeasurement{
|
||||
|
@ -163,7 +163,7 @@ func (lm *LatencyMonitor) RecordLatency(latency time.Duration, source string) {
|
|||
Jitter: time.Duration(jitter),
|
||||
Source: source,
|
||||
}
|
||||
|
||||
|
||||
if len(lm.latencyHistory) >= lm.config.HistorySize {
|
||||
// Remove oldest measurement
|
||||
copy(lm.latencyHistory, lm.latencyHistory[1:])
|
||||
|
@ -182,12 +182,12 @@ func (lm *LatencyMonitor) GetMetrics() LatencyMetrics {
|
|||
max := atomic.LoadInt64(&lm.maxLatency)
|
||||
samples := atomic.LoadInt64(&lm.latencySamples)
|
||||
jitterSum := atomic.LoadInt64(&lm.jitterAccumulator)
|
||||
|
||||
|
||||
var jitter time.Duration
|
||||
if samples > 0 {
|
||||
jitter = time.Duration(jitterSum / samples)
|
||||
}
|
||||
|
||||
|
||||
return LatencyMetrics{
|
||||
Current: time.Duration(current),
|
||||
Average: time.Duration(average),
|
||||
|
@ -209,10 +209,10 @@ func (lm *LatencyMonitor) AddOptimizationCallback(callback OptimizationCallback)
|
|||
// monitoringLoop runs the main monitoring and optimization loop
|
||||
func (lm *LatencyMonitor) monitoringLoop() {
|
||||
defer lm.wg.Done()
|
||||
|
||||
|
||||
ticker := time.NewTicker(lm.config.OptimizationInterval)
|
||||
defer ticker.Stop()
|
||||
|
||||
|
||||
for {
|
||||
select {
|
||||
case <-lm.ctx.Done():
|
||||
|
@ -226,44 +226,44 @@ func (lm *LatencyMonitor) monitoringLoop() {
|
|||
// runOptimization checks if optimization is needed and triggers callbacks
|
||||
func (lm *LatencyMonitor) runOptimization() {
|
||||
metrics := lm.GetMetrics()
|
||||
|
||||
|
||||
// Check if optimization is needed
|
||||
needsOptimization := false
|
||||
|
||||
|
||||
// Check if current latency exceeds threshold
|
||||
if metrics.Current > lm.config.MaxLatency {
|
||||
needsOptimization = true
|
||||
lm.logger.Warn().Dur("current_latency", metrics.Current).Dur("max_latency", lm.config.MaxLatency).Msg("Latency exceeds maximum threshold")
|
||||
}
|
||||
|
||||
|
||||
// Check if average latency is above adaptive threshold
|
||||
adaptiveThreshold := time.Duration(float64(lm.config.TargetLatency.Nanoseconds()) * (1.0 + lm.config.AdaptiveThreshold))
|
||||
if metrics.Average > adaptiveThreshold {
|
||||
needsOptimization = true
|
||||
lm.logger.Info().Dur("average_latency", metrics.Average).Dur("threshold", adaptiveThreshold).Msg("Average latency above adaptive threshold")
|
||||
}
|
||||
|
||||
|
||||
// Check if jitter is too high
|
||||
if metrics.Jitter > lm.config.JitterThreshold {
|
||||
needsOptimization = true
|
||||
lm.logger.Info().Dur("jitter", metrics.Jitter).Dur("threshold", lm.config.JitterThreshold).Msg("Jitter above threshold")
|
||||
}
|
||||
|
||||
|
||||
if needsOptimization {
|
||||
atomic.StoreInt64(&lm.lastOptimization, time.Now().UnixNano())
|
||||
|
||||
|
||||
// Run optimization callbacks
|
||||
lm.mutex.RLock()
|
||||
callbacks := make([]OptimizationCallback, len(lm.optimizationCallbacks))
|
||||
copy(callbacks, lm.optimizationCallbacks)
|
||||
lm.mutex.RUnlock()
|
||||
|
||||
|
||||
for _, callback := range callbacks {
|
||||
if err := callback(metrics); err != nil {
|
||||
lm.logger.Error().Err(err).Msg("Optimization callback failed")
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
lm.logger.Info().Interface("metrics", metrics).Msg("Latency optimization triggered")
|
||||
}
|
||||
}
|
||||
|
@ -272,14 +272,14 @@ func (lm *LatencyMonitor) runOptimization() {
|
|||
func (lm *LatencyMonitor) calculateTrend() LatencyTrend {
|
||||
lm.historyMutex.RLock()
|
||||
defer lm.historyMutex.RUnlock()
|
||||
|
||||
|
||||
if len(lm.latencyHistory) < 10 {
|
||||
return LatencyTrendStable
|
||||
}
|
||||
|
||||
|
||||
// Analyze last 10 measurements
|
||||
recentMeasurements := lm.latencyHistory[len(lm.latencyHistory)-10:]
|
||||
|
||||
|
||||
var increasing, decreasing int
|
||||
for i := 1; i < len(recentMeasurements); i++ {
|
||||
if recentMeasurements[i].Latency > recentMeasurements[i-1].Latency {
|
||||
|
@ -288,7 +288,7 @@ func (lm *LatencyMonitor) calculateTrend() LatencyTrend {
|
|||
decreasing++
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Determine trend based on direction changes
|
||||
if increasing > 6 {
|
||||
return LatencyTrendIncreasing
|
||||
|
@ -297,7 +297,7 @@ func (lm *LatencyMonitor) calculateTrend() LatencyTrend {
|
|||
} else if increasing+decreasing > 7 {
|
||||
return LatencyTrendVolatile
|
||||
}
|
||||
|
||||
|
||||
return LatencyTrendStable
|
||||
}
|
||||
|
||||
|
@ -305,8 +305,8 @@ func (lm *LatencyMonitor) calculateTrend() LatencyTrend {
|
|||
func (lm *LatencyMonitor) GetLatencyHistory() []LatencyMeasurement {
|
||||
lm.historyMutex.RLock()
|
||||
defer lm.historyMutex.RUnlock()
|
||||
|
||||
|
||||
history := make([]LatencyMeasurement, len(lm.latencyHistory))
|
||||
copy(history, lm.latencyHistory)
|
||||
return history
|
||||
}
|
||||
}
|
||||
|
|
|
@ -13,17 +13,17 @@ import (
|
|||
// MemoryMetrics provides comprehensive memory allocation statistics
|
||||
type MemoryMetrics struct {
|
||||
// Runtime memory statistics
|
||||
RuntimeStats RuntimeMemoryStats `json:"runtime_stats"`
|
||||
RuntimeStats RuntimeMemoryStats `json:"runtime_stats"`
|
||||
// Audio buffer pool statistics
|
||||
BufferPools AudioBufferPoolStats `json:"buffer_pools"`
|
||||
BufferPools AudioBufferPoolStats `json:"buffer_pools"`
|
||||
// Zero-copy frame pool statistics
|
||||
ZeroCopyPool ZeroCopyFramePoolStats `json:"zero_copy_pool"`
|
||||
ZeroCopyPool ZeroCopyFramePoolStats `json:"zero_copy_pool"`
|
||||
// Message pool statistics
|
||||
MessagePool MessagePoolStats `json:"message_pool"`
|
||||
MessagePool MessagePoolStats `json:"message_pool"`
|
||||
// Batch processor statistics
|
||||
BatchProcessor BatchProcessorMemoryStats `json:"batch_processor,omitempty"`
|
||||
BatchProcessor BatchProcessorMemoryStats `json:"batch_processor,omitempty"`
|
||||
// Collection timestamp
|
||||
Timestamp time.Time `json:"timestamp"`
|
||||
Timestamp time.Time `json:"timestamp"`
|
||||
}
|
||||
|
||||
// RuntimeMemoryStats provides Go runtime memory statistics
|
||||
|
@ -59,10 +59,10 @@ type RuntimeMemoryStats struct {
|
|||
|
||||
// BatchProcessorMemoryStats provides batch processor memory statistics
|
||||
type BatchProcessorMemoryStats struct {
|
||||
Initialized bool `json:"initialized"`
|
||||
Running bool `json:"running"`
|
||||
Stats BatchAudioStats `json:"stats"`
|
||||
BufferPool AudioBufferPoolDetailedStats `json:"buffer_pool,omitempty"`
|
||||
Initialized bool `json:"initialized"`
|
||||
Running bool `json:"running"`
|
||||
Stats BatchAudioStats `json:"stats"`
|
||||
BufferPool AudioBufferPoolDetailedStats `json:"buffer_pool,omitempty"`
|
||||
}
|
||||
|
||||
// GetBatchAudioProcessor is defined in batch_audio.go
|
||||
|
@ -83,7 +83,7 @@ func CollectMemoryMetrics() MemoryMetrics {
|
|||
// Collect runtime memory statistics
|
||||
var m runtime.MemStats
|
||||
runtime.ReadMemStats(&m)
|
||||
|
||||
|
||||
runtimeStats := RuntimeMemoryStats{
|
||||
Alloc: m.Alloc,
|
||||
TotalAlloc: m.TotalAlloc,
|
||||
|
@ -113,16 +113,16 @@ func CollectMemoryMetrics() MemoryMetrics {
|
|||
NumForcedGC: m.NumForcedGC,
|
||||
GCCPUFraction: m.GCCPUFraction,
|
||||
}
|
||||
|
||||
|
||||
// Collect audio buffer pool statistics
|
||||
bufferPoolStats := GetAudioBufferPoolStats()
|
||||
|
||||
|
||||
// Collect zero-copy frame pool statistics
|
||||
zeroCopyStats := GetGlobalZeroCopyPoolStats()
|
||||
|
||||
|
||||
// Collect message pool statistics
|
||||
messagePoolStats := GetGlobalMessagePoolStats()
|
||||
|
||||
|
||||
// Collect batch processor statistics if available
|
||||
var batchStats BatchProcessorMemoryStats
|
||||
if processor := GetBatchAudioProcessor(); processor != nil {
|
||||
|
@ -131,7 +131,7 @@ func CollectMemoryMetrics() MemoryMetrics {
|
|||
batchStats.Stats = processor.GetStats()
|
||||
// Note: BatchAudioProcessor uses sync.Pool, detailed stats not available
|
||||
}
|
||||
|
||||
|
||||
return MemoryMetrics{
|
||||
RuntimeStats: runtimeStats,
|
||||
BufferPools: bufferPoolStats,
|
||||
|
@ -145,23 +145,23 @@ func CollectMemoryMetrics() MemoryMetrics {
|
|||
// HandleMemoryMetrics provides an HTTP handler for memory metrics
|
||||
func HandleMemoryMetrics(w http.ResponseWriter, r *http.Request) {
|
||||
logger := getMemoryMetricsLogger()
|
||||
|
||||
|
||||
if r.Method != http.MethodGet {
|
||||
http.Error(w, "Method not allowed", http.StatusMethodNotAllowed)
|
||||
return
|
||||
}
|
||||
|
||||
|
||||
metrics := CollectMemoryMetrics()
|
||||
|
||||
|
||||
w.Header().Set("Content-Type", "application/json")
|
||||
w.Header().Set("Cache-Control", "no-cache")
|
||||
|
||||
|
||||
if err := json.NewEncoder(w).Encode(metrics); err != nil {
|
||||
logger.Error().Err(err).Msg("failed to encode memory metrics")
|
||||
http.Error(w, "Internal server error", http.StatusInternalServerError)
|
||||
return
|
||||
}
|
||||
|
||||
|
||||
logger.Debug().Msg("memory metrics served")
|
||||
}
|
||||
|
||||
|
@ -169,7 +169,7 @@ func HandleMemoryMetrics(w http.ResponseWriter, r *http.Request) {
|
|||
func LogMemoryMetrics() {
|
||||
logger := getMemoryMetricsLogger()
|
||||
metrics := CollectMemoryMetrics()
|
||||
|
||||
|
||||
logger.Info().
|
||||
Uint64("heap_alloc_mb", metrics.RuntimeStats.HeapAlloc/1024/1024).
|
||||
Uint64("heap_sys_mb", metrics.RuntimeStats.HeapSys/1024/1024).
|
||||
|
@ -186,13 +186,13 @@ func LogMemoryMetrics() {
|
|||
func StartMemoryMetricsLogging(interval time.Duration) {
|
||||
logger := getMemoryMetricsLogger()
|
||||
logger.Info().Dur("interval", interval).Msg("starting memory metrics logging")
|
||||
|
||||
|
||||
go func() {
|
||||
ticker := time.NewTicker(interval)
|
||||
defer ticker.Stop()
|
||||
|
||||
|
||||
for range ticker.C {
|
||||
LogMemoryMetrics()
|
||||
}
|
||||
}()
|
||||
}
|
||||
}
|
||||
|
|
|
@ -12,8 +12,8 @@ type MicrophoneContentionManager struct {
|
|||
lastOpNano int64
|
||||
cooldownNanos int64
|
||||
operationID int64
|
||||
|
||||
lockPtr unsafe.Pointer
|
||||
|
||||
lockPtr unsafe.Pointer
|
||||
}
|
||||
|
||||
func NewMicrophoneContentionManager(cooldown time.Duration) *MicrophoneContentionManager {
|
||||
|
|
|
@ -61,9 +61,9 @@ func NewOutputStreamer() (*OutputStreamer, error) {
|
|||
bufferPool: NewAudioBufferPool(MaxAudioFrameSize), // Use existing buffer pool
|
||||
ctx: ctx,
|
||||
cancel: cancel,
|
||||
batchSize: initialBatchSize, // Use adaptive batch size
|
||||
processingChan: make(chan []byte, 500), // Large buffer for smooth processing
|
||||
statsInterval: 5 * time.Second, // Statistics every 5 seconds
|
||||
batchSize: initialBatchSize, // Use adaptive batch size
|
||||
processingChan: make(chan []byte, 500), // Large buffer for smooth processing
|
||||
statsInterval: 5 * time.Second, // Statistics every 5 seconds
|
||||
lastStatsTime: time.Now().UnixNano(),
|
||||
}, nil
|
||||
}
|
||||
|
@ -85,9 +85,9 @@ func (s *OutputStreamer) Start() error {
|
|||
|
||||
// Start multiple goroutines for optimal performance
|
||||
s.wg.Add(3)
|
||||
go s.streamLoop() // Main streaming loop
|
||||
go s.processingLoop() // Frame processing loop
|
||||
go s.statisticsLoop() // Performance monitoring loop
|
||||
go s.streamLoop() // Main streaming loop
|
||||
go s.processingLoop() // Frame processing loop
|
||||
go s.statisticsLoop() // Performance monitoring loop
|
||||
|
||||
return nil
|
||||
}
|
||||
|
@ -125,7 +125,7 @@ func (s *OutputStreamer) streamLoop() {
|
|||
frameInterval := time.Duration(20) * time.Millisecond // 50 FPS base rate
|
||||
ticker := time.NewTicker(frameInterval)
|
||||
defer ticker.Stop()
|
||||
|
||||
|
||||
// Batch size update ticker
|
||||
batchUpdateTicker := time.NewTicker(500 * time.Millisecond)
|
||||
defer batchUpdateTicker.Stop()
|
||||
|
@ -181,7 +181,7 @@ func (s *OutputStreamer) processingLoop() {
|
|||
// Pin goroutine to OS thread for consistent performance
|
||||
runtime.LockOSThread()
|
||||
defer runtime.UnlockOSThread()
|
||||
|
||||
|
||||
// Set high priority for audio output processing
|
||||
if err := SetAudioThreadPriority(); err != nil {
|
||||
getOutputStreamingLogger().Warn().Err(err).Msg("Failed to set audio output processing priority")
|
||||
|
@ -192,7 +192,7 @@ func (s *OutputStreamer) processingLoop() {
|
|||
}
|
||||
}()
|
||||
|
||||
for _ = range s.processingChan {
|
||||
for range s.processingChan {
|
||||
// Process frame (currently just receiving, but can be extended)
|
||||
if _, err := s.client.ReceiveFrame(); err != nil {
|
||||
if s.client.IsConnected() {
|
||||
|
@ -260,13 +260,13 @@ func (s *OutputStreamer) GetDetailedStats() map[string]interface{} {
|
|||
processingTime := atomic.LoadInt64(&s.processingTime)
|
||||
|
||||
stats := map[string]interface{}{
|
||||
"processed_frames": processed,
|
||||
"dropped_frames": dropped,
|
||||
"processed_frames": processed,
|
||||
"dropped_frames": dropped,
|
||||
"avg_processing_time_ns": processingTime,
|
||||
"batch_size": s.batchSize,
|
||||
"channel_buffer_size": cap(s.processingChan),
|
||||
"channel_current_size": len(s.processingChan),
|
||||
"connected": s.client.IsConnected(),
|
||||
"batch_size": s.batchSize,
|
||||
"channel_buffer_size": cap(s.processingChan),
|
||||
"channel_current_size": len(s.processingChan),
|
||||
"connected": s.client.IsConnected(),
|
||||
}
|
||||
|
||||
if processed+dropped > 0 {
|
||||
|
|
|
@ -22,7 +22,7 @@ const (
|
|||
AudioHighPriority = 80 // High priority for critical audio processing
|
||||
AudioMediumPriority = 60 // Medium priority for regular audio processing
|
||||
AudioLowPriority = 40 // Low priority for background audio tasks
|
||||
|
||||
|
||||
// SCHED_NORMAL is the default (priority 0)
|
||||
NormalPriority = 0
|
||||
)
|
||||
|
@ -36,14 +36,14 @@ const (
|
|||
|
||||
// PriorityScheduler manages thread priorities for audio processing
|
||||
type PriorityScheduler struct {
|
||||
logger zerolog.Logger
|
||||
logger zerolog.Logger
|
||||
enabled bool
|
||||
}
|
||||
|
||||
// NewPriorityScheduler creates a new priority scheduler
|
||||
func NewPriorityScheduler() *PriorityScheduler {
|
||||
return &PriorityScheduler{
|
||||
logger: logging.GetDefaultLogger().With().Str("component", "priority-scheduler").Logger(),
|
||||
logger: logging.GetDefaultLogger().With().Str("component", "priority-scheduler").Logger(),
|
||||
enabled: true,
|
||||
}
|
||||
}
|
||||
|
@ -162,4 +162,4 @@ func SetAudioIOThreadPriority() error {
|
|||
// ResetThreadPriority is a convenience function to reset thread priority
|
||||
func ResetThreadPriority() error {
|
||||
return GetPriorityScheduler().ResetPriority()
|
||||
}
|
||||
}
|
||||
|
|
|
@ -17,7 +17,7 @@ type AudioRelay struct {
|
|||
// Atomic fields MUST be first for ARM32 alignment (int64 fields need 8-byte alignment)
|
||||
framesRelayed int64
|
||||
framesDropped int64
|
||||
|
||||
|
||||
client *AudioClient
|
||||
ctx context.Context
|
||||
cancel context.CancelFunc
|
||||
|
|
|
@ -20,14 +20,14 @@ type ZeroCopyAudioFrame struct {
|
|||
// ZeroCopyFramePool manages reusable zero-copy audio frames
|
||||
type ZeroCopyFramePool struct {
|
||||
// Atomic fields MUST be first for ARM32 alignment (int64 fields need 8-byte alignment)
|
||||
counter int64 // Frame counter (atomic)
|
||||
hitCount int64 // Pool hit counter (atomic)
|
||||
missCount int64 // Pool miss counter (atomic)
|
||||
|
||||
counter int64 // Frame counter (atomic)
|
||||
hitCount int64 // Pool hit counter (atomic)
|
||||
missCount int64 // Pool miss counter (atomic)
|
||||
|
||||
// Other fields
|
||||
pool sync.Pool
|
||||
maxSize int
|
||||
mutex sync.RWMutex
|
||||
pool sync.Pool
|
||||
maxSize int
|
||||
mutex sync.RWMutex
|
||||
// Memory optimization fields
|
||||
preallocated []*ZeroCopyAudioFrame // Pre-allocated frames for immediate use
|
||||
preallocSize int // Number of pre-allocated frames
|
||||
|
@ -40,7 +40,7 @@ func NewZeroCopyFramePool(maxFrameSize int) *ZeroCopyFramePool {
|
|||
preallocSize := 15
|
||||
maxPoolSize := 50 // Limit total pool size
|
||||
preallocated := make([]*ZeroCopyAudioFrame, 0, preallocSize)
|
||||
|
||||
|
||||
// Pre-allocate frames to reduce initial allocation overhead
|
||||
for i := 0; i < preallocSize; i++ {
|
||||
frame := &ZeroCopyAudioFrame{
|
||||
|
@ -50,7 +50,7 @@ func NewZeroCopyFramePool(maxFrameSize int) *ZeroCopyFramePool {
|
|||
}
|
||||
preallocated = append(preallocated, frame)
|
||||
}
|
||||
|
||||
|
||||
return &ZeroCopyFramePool{
|
||||
maxSize: maxFrameSize,
|
||||
preallocated: preallocated,
|
||||
|
@ -76,18 +76,18 @@ func (p *ZeroCopyFramePool) Get() *ZeroCopyAudioFrame {
|
|||
frame := p.preallocated[len(p.preallocated)-1]
|
||||
p.preallocated = p.preallocated[:len(p.preallocated)-1]
|
||||
p.mutex.Unlock()
|
||||
|
||||
|
||||
frame.mutex.Lock()
|
||||
frame.refCount = 1
|
||||
frame.length = 0
|
||||
frame.data = frame.data[:0]
|
||||
frame.mutex.Unlock()
|
||||
|
||||
|
||||
atomic.AddInt64(&p.hitCount, 1)
|
||||
return frame
|
||||
}
|
||||
p.mutex.Unlock()
|
||||
|
||||
|
||||
// Try sync.Pool next
|
||||
frame := p.pool.Get().(*ZeroCopyAudioFrame)
|
||||
frame.mutex.Lock()
|
||||
|
@ -95,7 +95,7 @@ func (p *ZeroCopyFramePool) Get() *ZeroCopyAudioFrame {
|
|||
frame.length = 0
|
||||
frame.data = frame.data[:0]
|
||||
frame.mutex.Unlock()
|
||||
|
||||
|
||||
atomic.AddInt64(&p.hitCount, 1)
|
||||
return frame
|
||||
}
|
||||
|
@ -113,7 +113,7 @@ func (p *ZeroCopyFramePool) Put(frame *ZeroCopyAudioFrame) {
|
|||
frame.length = 0
|
||||
frame.data = frame.data[:0]
|
||||
frame.mutex.Unlock()
|
||||
|
||||
|
||||
// First try to return to pre-allocated pool for fastest reuse
|
||||
p.mutex.Lock()
|
||||
if len(p.preallocated) < p.preallocSize {
|
||||
|
@ -122,16 +122,16 @@ func (p *ZeroCopyFramePool) Put(frame *ZeroCopyAudioFrame) {
|
|||
return
|
||||
}
|
||||
p.mutex.Unlock()
|
||||
|
||||
|
||||
// Check pool size limit to prevent excessive memory usage
|
||||
p.mutex.RLock()
|
||||
currentCount := atomic.LoadInt64(&p.counter)
|
||||
p.mutex.RUnlock()
|
||||
|
||||
|
||||
if currentCount >= int64(p.maxPoolSize) {
|
||||
return // Pool is full, let GC handle this frame
|
||||
}
|
||||
|
||||
|
||||
// Return to sync.Pool
|
||||
p.pool.Put(frame)
|
||||
atomic.AddInt64(&p.counter, 1)
|
||||
|
@ -227,16 +227,16 @@ func (p *ZeroCopyFramePool) GetZeroCopyPoolStats() ZeroCopyFramePoolStats {
|
|||
preallocatedCount := len(p.preallocated)
|
||||
currentCount := atomic.LoadInt64(&p.counter)
|
||||
p.mutex.RUnlock()
|
||||
|
||||
|
||||
hitCount := atomic.LoadInt64(&p.hitCount)
|
||||
missCount := atomic.LoadInt64(&p.missCount)
|
||||
totalRequests := hitCount + missCount
|
||||
|
||||
|
||||
var hitRate float64
|
||||
if totalRequests > 0 {
|
||||
hitRate = float64(hitCount) / float64(totalRequests) * 100
|
||||
}
|
||||
|
||||
|
||||
return ZeroCopyFramePoolStats{
|
||||
MaxFrameSize: p.maxSize,
|
||||
MaxPoolSize: p.maxPoolSize,
|
||||
|
@ -283,7 +283,7 @@ func PutZeroCopyFrame(frame *ZeroCopyAudioFrame) {
|
|||
// ZeroCopyAudioReadEncode performs audio read and encode with zero-copy optimization
|
||||
func ZeroCopyAudioReadEncode() (*ZeroCopyAudioFrame, error) {
|
||||
frame := GetZeroCopyFrame()
|
||||
|
||||
|
||||
// Ensure frame has enough capacity
|
||||
if frame.Capacity() < MaxAudioFrameSize {
|
||||
// Reallocate if needed
|
||||
|
@ -311,4 +311,4 @@ func ZeroCopyAudioReadEncode() (*ZeroCopyAudioFrame, error) {
|
|||
frame.mutex.Unlock()
|
||||
|
||||
return frame, nil
|
||||
}
|
||||
}
|
||||
|
|
2
main.go
2
main.go
|
@ -33,7 +33,7 @@ func runAudioServer() {
|
|||
func startAudioSubprocess() error {
|
||||
// Start adaptive buffer management for optimal performance
|
||||
audio.StartAdaptiveBuffering()
|
||||
|
||||
|
||||
// Create audio server supervisor
|
||||
audioSupervisor = audio.NewAudioServerSupervisor()
|
||||
|
||||
|
|
10
webrtc.go
10
webrtc.go
|
@ -30,12 +30,12 @@ type Session struct {
|
|||
AudioInputManager *audio.AudioInputManager
|
||||
shouldUmountVirtualMedia bool
|
||||
// Microphone operation throttling
|
||||
micCooldown time.Duration
|
||||
micCooldown time.Duration
|
||||
// Audio frame processing
|
||||
audioFrameChan chan []byte
|
||||
audioStopChan chan struct{}
|
||||
audioWg sync.WaitGroup
|
||||
rpcQueue chan webrtc.DataChannelMessage
|
||||
audioFrameChan chan []byte
|
||||
audioStopChan chan struct{}
|
||||
audioWg sync.WaitGroup
|
||||
rpcQueue chan webrtc.DataChannelMessage
|
||||
}
|
||||
|
||||
type SessionConfig struct {
|
||||
|
|
Loading…
Reference in New Issue