kvm/internal/audio/input_ipc.go

945 lines
25 KiB
Go

package audio
import (
"context"
"encoding/binary"
"fmt"
"io"
"net"
"os"
"path/filepath"
"runtime"
"sync"
"sync/atomic"
"time"
"github.com/jetkvm/kvm/internal/logging"
)
const (
inputMagicNumber uint32 = 0x4A4B4D49 // "JKMI" (JetKVM Microphone Input)
inputSocketName = "audio_input.sock"
maxFrameSize = 4096 // Maximum Opus frame size
writeTimeout = 15 * time.Millisecond // Non-blocking write timeout (increased for high load)
maxDroppedFrames = 100 // Maximum consecutive dropped frames before reconnect
headerSize = 17 // Fixed header size: 4+1+4+8 bytes
messagePoolSize = 256 // Pre-allocated message pool size
)
// InputMessageType represents the type of IPC message
type InputMessageType uint8
const (
InputMessageTypeOpusFrame InputMessageType = iota
InputMessageTypeConfig
InputMessageTypeStop
InputMessageTypeHeartbeat
InputMessageTypeAck
)
// InputIPCMessage represents a message sent over IPC
type InputIPCMessage struct {
Magic uint32
Type InputMessageType
Length uint32
Timestamp int64
Data []byte
}
// OptimizedIPCMessage represents an optimized message with pre-allocated buffers
type OptimizedIPCMessage struct {
header [headerSize]byte // Pre-allocated header buffer
data []byte // Reusable data buffer
msg InputIPCMessage // Embedded message
}
// MessagePool manages a pool of reusable messages to reduce allocations
type MessagePool struct {
// Atomic fields MUST be first for ARM32 alignment (int64 fields need 8-byte alignment)
hitCount int64 // Pool hit counter (atomic)
missCount int64 // Pool miss counter (atomic)
// Other fields
pool chan *OptimizedIPCMessage
// Memory optimization fields
preallocated []*OptimizedIPCMessage // Pre-allocated messages for immediate use
preallocSize int // Number of pre-allocated messages
maxPoolSize int // Maximum pool size to prevent memory bloat
mutex sync.RWMutex // Protects preallocated slice
}
// Global message pool instance
var globalMessagePool = &MessagePool{
pool: make(chan *OptimizedIPCMessage, messagePoolSize),
}
var messagePoolInitOnce sync.Once
// initializeMessagePool initializes the message pool with pre-allocated messages
func initializeMessagePool() {
messagePoolInitOnce.Do(func() {
// Pre-allocate 30% of pool size for immediate availability
preallocSize := messagePoolSize * 30 / 100
globalMessagePool.preallocSize = preallocSize
globalMessagePool.maxPoolSize = messagePoolSize * 2 // Allow growth up to 2x
globalMessagePool.preallocated = make([]*OptimizedIPCMessage, 0, preallocSize)
// Pre-allocate messages to reduce initial allocation overhead
for i := 0; i < preallocSize; i++ {
msg := &OptimizedIPCMessage{
data: make([]byte, 0, maxFrameSize),
}
globalMessagePool.preallocated = append(globalMessagePool.preallocated, msg)
}
// Fill the channel pool with remaining messages
for i := preallocSize; i < messagePoolSize; i++ {
globalMessagePool.pool <- &OptimizedIPCMessage{
data: make([]byte, 0, maxFrameSize),
}
}
})
}
// Get retrieves a message from the pool
func (mp *MessagePool) Get() *OptimizedIPCMessage {
initializeMessagePool()
// First try pre-allocated messages for fastest access
mp.mutex.Lock()
if len(mp.preallocated) > 0 {
msg := mp.preallocated[len(mp.preallocated)-1]
mp.preallocated = mp.preallocated[:len(mp.preallocated)-1]
mp.mutex.Unlock()
atomic.AddInt64(&mp.hitCount, 1)
return msg
}
mp.mutex.Unlock()
// Try channel pool next
select {
case msg := <-mp.pool:
atomic.AddInt64(&mp.hitCount, 1)
return msg
default:
// Pool exhausted, create new message
atomic.AddInt64(&mp.missCount, 1)
return &OptimizedIPCMessage{
data: make([]byte, 0, maxFrameSize),
}
}
}
// Put returns a message to the pool
func (mp *MessagePool) Put(msg *OptimizedIPCMessage) {
// Reset the message for reuse
msg.data = msg.data[:0]
msg.msg = InputIPCMessage{}
// First try to return to pre-allocated pool for fastest reuse
mp.mutex.Lock()
if len(mp.preallocated) < mp.preallocSize {
mp.preallocated = append(mp.preallocated, msg)
mp.mutex.Unlock()
return
}
mp.mutex.Unlock()
// Try channel pool next
select {
case mp.pool <- msg:
// Successfully returned to pool
default:
// Pool full, let GC handle it
}
}
// InputIPCConfig represents configuration for audio input
type InputIPCConfig struct {
SampleRate int
Channels int
FrameSize int
}
// AudioInputServer handles IPC communication for audio input processing
type AudioInputServer struct {
// Atomic fields must be first for proper alignment on ARM
bufferSize int64 // Current buffer size (atomic)
processingTime int64 // Average processing time in nanoseconds (atomic)
droppedFrames int64 // Dropped frames counter (atomic)
totalFrames int64 // Total frames counter (atomic)
listener net.Listener
conn net.Conn
mtx sync.Mutex
running bool
// Triple-goroutine architecture
messageChan chan *InputIPCMessage // Buffered channel for incoming messages
processChan chan *InputIPCMessage // Buffered channel for processing queue
stopChan chan struct{} // Stop signal for all goroutines
wg sync.WaitGroup // Wait group for goroutine coordination
}
// NewAudioInputServer creates a new audio input server
func NewAudioInputServer() (*AudioInputServer, error) {
socketPath := getInputSocketPath()
// Remove existing socket if any
os.Remove(socketPath)
listener, err := net.Listen("unix", socketPath)
if err != nil {
return nil, fmt.Errorf("failed to create unix socket: %w", err)
}
// Get initial buffer size from adaptive buffer manager
adaptiveManager := GetAdaptiveBufferManager()
initialBufferSize := int64(adaptiveManager.GetInputBufferSize())
return &AudioInputServer{
listener: listener,
messageChan: make(chan *InputIPCMessage, initialBufferSize),
processChan: make(chan *InputIPCMessage, initialBufferSize),
stopChan: make(chan struct{}),
bufferSize: initialBufferSize,
}, nil
}
// Start starts the audio input server
func (ais *AudioInputServer) Start() error {
ais.mtx.Lock()
defer ais.mtx.Unlock()
if ais.running {
return fmt.Errorf("server already running")
}
ais.running = true
// Start triple-goroutine architecture
ais.startReaderGoroutine()
ais.startProcessorGoroutine()
ais.startMonitorGoroutine()
// Accept connections in a goroutine
go ais.acceptConnections()
return nil
}
// Stop stops the audio input server
func (ais *AudioInputServer) Stop() {
ais.mtx.Lock()
defer ais.mtx.Unlock()
if !ais.running {
return
}
ais.running = false
// Signal all goroutines to stop
close(ais.stopChan)
ais.wg.Wait()
if ais.conn != nil {
ais.conn.Close()
ais.conn = nil
}
if ais.listener != nil {
ais.listener.Close()
}
}
// Close closes the server and cleans up resources
func (ais *AudioInputServer) Close() {
ais.Stop()
// Remove socket file
os.Remove(getInputSocketPath())
}
// acceptConnections accepts incoming connections
func (ais *AudioInputServer) acceptConnections() {
for ais.running {
conn, err := ais.listener.Accept()
if err != nil {
if ais.running {
// Only log error if we're still supposed to be running
continue
}
return
}
ais.mtx.Lock()
// Close existing connection if any
if ais.conn != nil {
ais.conn.Close()
}
ais.conn = conn
ais.mtx.Unlock()
// Handle this connection
go ais.handleConnection(conn)
}
}
// handleConnection handles a single client connection
func (ais *AudioInputServer) handleConnection(conn net.Conn) {
defer conn.Close()
// Connection is now handled by the reader goroutine
// Just wait for connection to close or stop signal
for {
select {
case <-ais.stopChan:
return
default:
// Check if connection is still alive
if ais.conn == nil {
return
}
time.Sleep(100 * time.Millisecond)
}
}
}
// readMessage reads a complete message from the connection
func (ais *AudioInputServer) readMessage(conn net.Conn) (*InputIPCMessage, error) {
// Get optimized message from pool
optMsg := globalMessagePool.Get()
defer globalMessagePool.Put(optMsg)
// Read header directly into pre-allocated buffer
_, err := io.ReadFull(conn, optMsg.header[:])
if err != nil {
return nil, err
}
// Parse header using optimized access
msg := &optMsg.msg
msg.Magic = binary.LittleEndian.Uint32(optMsg.header[0:4])
msg.Type = InputMessageType(optMsg.header[4])
msg.Length = binary.LittleEndian.Uint32(optMsg.header[5:9])
msg.Timestamp = int64(binary.LittleEndian.Uint64(optMsg.header[9:17]))
// Validate magic number
if msg.Magic != inputMagicNumber {
return nil, fmt.Errorf("invalid magic number: %x", msg.Magic)
}
// Validate message length
if msg.Length > maxFrameSize {
return nil, fmt.Errorf("message too large: %d bytes", msg.Length)
}
// Read data if present using pooled buffer
if msg.Length > 0 {
// Ensure buffer capacity
if cap(optMsg.data) < int(msg.Length) {
optMsg.data = make([]byte, msg.Length)
} else {
optMsg.data = optMsg.data[:msg.Length]
}
_, err = io.ReadFull(conn, optMsg.data)
if err != nil {
return nil, err
}
msg.Data = optMsg.data
}
// Return a copy of the message (data will be copied by caller if needed)
result := &InputIPCMessage{
Magic: msg.Magic,
Type: msg.Type,
Length: msg.Length,
Timestamp: msg.Timestamp,
}
if msg.Length > 0 {
// Copy data to ensure it's not affected by buffer reuse
result.Data = make([]byte, msg.Length)
copy(result.Data, msg.Data)
}
return result, nil
}
// processMessage processes a received message
func (ais *AudioInputServer) processMessage(msg *InputIPCMessage) error {
switch msg.Type {
case InputMessageTypeOpusFrame:
return ais.processOpusFrame(msg.Data)
case InputMessageTypeConfig:
return ais.processConfig(msg.Data)
case InputMessageTypeStop:
return fmt.Errorf("stop message received")
case InputMessageTypeHeartbeat:
return ais.sendAck()
default:
return fmt.Errorf("unknown message type: %d", msg.Type)
}
}
// processOpusFrame processes an Opus audio frame
func (ais *AudioInputServer) processOpusFrame(data []byte) error {
if len(data) == 0 {
return nil // Empty frame, ignore
}
// Process the Opus frame using CGO
_, err := CGOAudioDecodeWrite(data)
return err
}
// processConfig processes a configuration update
func (ais *AudioInputServer) processConfig(data []byte) error {
// Acknowledge configuration receipt
return ais.sendAck()
}
// sendAck sends an acknowledgment message
func (ais *AudioInputServer) sendAck() error {
ais.mtx.Lock()
defer ais.mtx.Unlock()
if ais.conn == nil {
return fmt.Errorf("no connection")
}
msg := &InputIPCMessage{
Magic: inputMagicNumber,
Type: InputMessageTypeAck,
Length: 0,
Timestamp: time.Now().UnixNano(),
}
return ais.writeMessage(ais.conn, msg)
}
// writeMessage writes a message to the connection using optimized buffers
func (ais *AudioInputServer) writeMessage(conn net.Conn, msg *InputIPCMessage) error {
// Get optimized message from pool for header preparation
optMsg := globalMessagePool.Get()
defer globalMessagePool.Put(optMsg)
// Prepare header in pre-allocated buffer
binary.LittleEndian.PutUint32(optMsg.header[0:4], msg.Magic)
optMsg.header[4] = byte(msg.Type)
binary.LittleEndian.PutUint32(optMsg.header[5:9], msg.Length)
binary.LittleEndian.PutUint64(optMsg.header[9:17], uint64(msg.Timestamp))
// Write header
_, err := conn.Write(optMsg.header[:])
if err != nil {
return err
}
// Write data if present
if msg.Length > 0 && msg.Data != nil {
_, err = conn.Write(msg.Data)
if err != nil {
return err
}
}
return nil
}
// AudioInputClient handles IPC communication from the main process
type AudioInputClient struct {
// Atomic fields MUST be first for ARM32 alignment (int64 fields need 8-byte alignment)
droppedFrames int64 // Atomic counter for dropped frames
totalFrames int64 // Atomic counter for total frames
conn net.Conn
mtx sync.Mutex
running bool
}
// NewAudioInputClient creates a new audio input client
func NewAudioInputClient() *AudioInputClient {
return &AudioInputClient{}
}
// Connect connects to the audio input server
func (aic *AudioInputClient) Connect() error {
aic.mtx.Lock()
defer aic.mtx.Unlock()
if aic.running {
return nil // Already connected
}
socketPath := getInputSocketPath()
// Try connecting multiple times as the server might not be ready
// Reduced retry count and delay for faster startup
for i := 0; i < 10; i++ {
conn, err := net.Dial("unix", socketPath)
if err == nil {
aic.conn = conn
aic.running = true
return nil
}
// Exponential backoff starting at 50ms
delay := time.Duration(50*(1<<uint(i/3))) * time.Millisecond
if delay > 500*time.Millisecond {
delay = 500 * time.Millisecond
}
time.Sleep(delay)
}
return fmt.Errorf("failed to connect to audio input server")
}
// Disconnect disconnects from the audio input server
func (aic *AudioInputClient) Disconnect() {
aic.mtx.Lock()
defer aic.mtx.Unlock()
if !aic.running {
return
}
aic.running = false
if aic.conn != nil {
// Send stop message
msg := &InputIPCMessage{
Magic: inputMagicNumber,
Type: InputMessageTypeStop,
Length: 0,
Timestamp: time.Now().UnixNano(),
}
_ = aic.writeMessage(msg) // Ignore errors during shutdown
aic.conn.Close()
aic.conn = nil
}
}
// SendFrame sends an Opus frame to the audio input server
func (aic *AudioInputClient) SendFrame(frame []byte) error {
aic.mtx.Lock()
defer aic.mtx.Unlock()
if !aic.running || aic.conn == nil {
return fmt.Errorf("not connected")
}
if len(frame) == 0 {
return nil // Empty frame, ignore
}
if len(frame) > maxFrameSize {
return fmt.Errorf("frame too large: %d bytes", len(frame))
}
msg := &InputIPCMessage{
Magic: inputMagicNumber,
Type: InputMessageTypeOpusFrame,
Length: uint32(len(frame)),
Timestamp: time.Now().UnixNano(),
Data: frame,
}
return aic.writeMessage(msg)
}
// SendFrameZeroCopy sends a zero-copy Opus frame to the audio input server
func (aic *AudioInputClient) SendFrameZeroCopy(frame *ZeroCopyAudioFrame) error {
aic.mtx.Lock()
defer aic.mtx.Unlock()
if !aic.running || aic.conn == nil {
return fmt.Errorf("not connected")
}
if frame == nil || frame.Length() == 0 {
return nil // Empty frame, ignore
}
if frame.Length() > maxFrameSize {
return fmt.Errorf("frame too large: %d bytes", frame.Length())
}
// Use zero-copy data directly
msg := &InputIPCMessage{
Magic: inputMagicNumber,
Type: InputMessageTypeOpusFrame,
Length: uint32(frame.Length()),
Timestamp: time.Now().UnixNano(),
Data: frame.Data(), // Zero-copy data access
}
return aic.writeMessage(msg)
}
// SendConfig sends a configuration update to the audio input server
func (aic *AudioInputClient) SendConfig(config InputIPCConfig) error {
aic.mtx.Lock()
defer aic.mtx.Unlock()
if !aic.running || aic.conn == nil {
return fmt.Errorf("not connected")
}
// Serialize config (simple binary format)
data := make([]byte, 12) // 3 * int32
binary.LittleEndian.PutUint32(data[0:4], uint32(config.SampleRate))
binary.LittleEndian.PutUint32(data[4:8], uint32(config.Channels))
binary.LittleEndian.PutUint32(data[8:12], uint32(config.FrameSize))
msg := &InputIPCMessage{
Magic: inputMagicNumber,
Type: InputMessageTypeConfig,
Length: uint32(len(data)),
Timestamp: time.Now().UnixNano(),
Data: data,
}
return aic.writeMessage(msg)
}
// SendHeartbeat sends a heartbeat message
func (aic *AudioInputClient) SendHeartbeat() error {
aic.mtx.Lock()
defer aic.mtx.Unlock()
if !aic.running || aic.conn == nil {
return fmt.Errorf("not connected")
}
msg := &InputIPCMessage{
Magic: inputMagicNumber,
Type: InputMessageTypeHeartbeat,
Length: 0,
Timestamp: time.Now().UnixNano(),
}
return aic.writeMessage(msg)
}
// writeMessage writes a message to the server
func (aic *AudioInputClient) writeMessage(msg *InputIPCMessage) error {
// Increment total frames counter
atomic.AddInt64(&aic.totalFrames, 1)
// Get optimized message from pool for header preparation
optMsg := globalMessagePool.Get()
defer globalMessagePool.Put(optMsg)
// Prepare header in pre-allocated buffer
binary.LittleEndian.PutUint32(optMsg.header[0:4], msg.Magic)
optMsg.header[4] = byte(msg.Type)
binary.LittleEndian.PutUint32(optMsg.header[5:9], msg.Length)
binary.LittleEndian.PutUint64(optMsg.header[9:17], uint64(msg.Timestamp))
// Use non-blocking write with timeout
ctx, cancel := context.WithTimeout(context.Background(), writeTimeout)
defer cancel()
// Create a channel to signal write completion
done := make(chan error, 1)
go func() {
// Write header using pre-allocated buffer
_, err := aic.conn.Write(optMsg.header[:])
if err != nil {
done <- err
return
}
// Write data if present
if msg.Length > 0 && msg.Data != nil {
_, err = aic.conn.Write(msg.Data)
if err != nil {
done <- err
return
}
}
done <- nil
}()
// Wait for completion or timeout
select {
case err := <-done:
if err != nil {
atomic.AddInt64(&aic.droppedFrames, 1)
return err
}
return nil
case <-ctx.Done():
// Timeout occurred - drop frame to prevent blocking
atomic.AddInt64(&aic.droppedFrames, 1)
return fmt.Errorf("write timeout - frame dropped")
}
}
// IsConnected returns whether the client is connected
func (aic *AudioInputClient) IsConnected() bool {
aic.mtx.Lock()
defer aic.mtx.Unlock()
return aic.running && aic.conn != nil
}
// GetFrameStats returns frame statistics
func (aic *AudioInputClient) GetFrameStats() (total, dropped int64) {
return atomic.LoadInt64(&aic.totalFrames), atomic.LoadInt64(&aic.droppedFrames)
}
// GetDropRate returns the current frame drop rate as a percentage
func (aic *AudioInputClient) GetDropRate() float64 {
total := atomic.LoadInt64(&aic.totalFrames)
dropped := atomic.LoadInt64(&aic.droppedFrames)
if total == 0 {
return 0.0
}
return float64(dropped) / float64(total) * 100.0
}
// ResetStats resets frame statistics
func (aic *AudioInputClient) ResetStats() {
atomic.StoreInt64(&aic.totalFrames, 0)
atomic.StoreInt64(&aic.droppedFrames, 0)
}
// startReaderGoroutine starts the message reader goroutine
func (ais *AudioInputServer) startReaderGoroutine() {
ais.wg.Add(1)
go func() {
defer ais.wg.Done()
for {
select {
case <-ais.stopChan:
return
default:
if ais.conn != nil {
msg, err := ais.readMessage(ais.conn)
if err != nil {
continue // Connection error, retry
}
// Send to message channel with non-blocking write
select {
case ais.messageChan <- msg:
atomic.AddInt64(&ais.totalFrames, 1)
default:
// Channel full, drop message
atomic.AddInt64(&ais.droppedFrames, 1)
}
}
}
}
}()
}
// startProcessorGoroutine starts the message processor goroutine
func (ais *AudioInputServer) startProcessorGoroutine() {
ais.wg.Add(1)
go func() {
runtime.LockOSThread()
defer runtime.UnlockOSThread()
// Set high priority for audio processing
logger := logging.GetDefaultLogger().With().Str("component", "audio-input-processor").Logger()
if err := SetAudioThreadPriority(); err != nil {
logger.Warn().Err(err).Msg("Failed to set audio processing priority")
}
defer func() {
if err := ResetThreadPriority(); err != nil {
logger.Warn().Err(err).Msg("Failed to reset thread priority")
}
}()
defer ais.wg.Done()
for {
select {
case <-ais.stopChan:
return
case msg := <-ais.messageChan:
// Intelligent frame dropping: prioritize recent frames
if msg.Type == InputMessageTypeOpusFrame {
// Check if processing queue is getting full
queueLen := len(ais.processChan)
bufferSize := int(atomic.LoadInt64(&ais.bufferSize))
if queueLen > bufferSize*3/4 {
// Drop oldest frames, keep newest
select {
case <-ais.processChan: // Remove oldest
atomic.AddInt64(&ais.droppedFrames, 1)
default:
}
}
}
// Send to processing queue
select {
case ais.processChan <- msg:
default:
// Processing queue full, drop frame
atomic.AddInt64(&ais.droppedFrames, 1)
}
}
}
}()
}
// startMonitorGoroutine starts the performance monitoring goroutine
func (ais *AudioInputServer) startMonitorGoroutine() {
ais.wg.Add(1)
go func() {
runtime.LockOSThread()
defer runtime.UnlockOSThread()
// Set I/O priority for monitoring
logger := logging.GetDefaultLogger().With().Str("component", "audio-input-monitor").Logger()
if err := SetAudioIOThreadPriority(); err != nil {
logger.Warn().Err(err).Msg("Failed to set audio I/O priority")
}
defer func() {
if err := ResetThreadPriority(); err != nil {
logger.Warn().Err(err).Msg("Failed to reset thread priority")
}
}()
defer ais.wg.Done()
ticker := time.NewTicker(100 * time.Millisecond)
defer ticker.Stop()
// Buffer size update ticker (less frequent)
bufferUpdateTicker := time.NewTicker(500 * time.Millisecond)
defer bufferUpdateTicker.Stop()
for {
select {
case <-ais.stopChan:
return
case <-ticker.C:
// Process frames from processing queue
for {
select {
case msg := <-ais.processChan:
start := time.Now()
err := ais.processMessage(msg)
processingTime := time.Since(start)
// Calculate end-to-end latency using message timestamp
var latency time.Duration
if msg.Type == InputMessageTypeOpusFrame && msg.Timestamp > 0 {
msgTime := time.Unix(0, msg.Timestamp)
latency = time.Since(msgTime)
// Use exponential moving average for end-to-end latency tracking
currentAvg := atomic.LoadInt64(&ais.processingTime)
// Weight: 90% historical, 10% current (for smoother averaging)
newAvg := (currentAvg*9 + latency.Nanoseconds()) / 10
atomic.StoreInt64(&ais.processingTime, newAvg)
} else {
// Fallback to processing time only
latency = processingTime
currentAvg := atomic.LoadInt64(&ais.processingTime)
newAvg := (currentAvg + processingTime.Nanoseconds()) / 2
atomic.StoreInt64(&ais.processingTime, newAvg)
}
// Report latency to adaptive buffer manager
ais.ReportLatency(latency)
if err != nil {
atomic.AddInt64(&ais.droppedFrames, 1)
}
default:
// No more messages to process
goto checkBufferUpdate
}
}
checkBufferUpdate:
// Check if we need to update buffer size
select {
case <-bufferUpdateTicker.C:
// Update buffer size from adaptive buffer manager
ais.UpdateBufferSize()
default:
// No buffer update needed
}
}
}
}()
}
// GetServerStats returns server performance statistics
func (ais *AudioInputServer) GetServerStats() (total, dropped int64, avgProcessingTime time.Duration, bufferSize int64) {
return atomic.LoadInt64(&ais.totalFrames),
atomic.LoadInt64(&ais.droppedFrames),
time.Duration(atomic.LoadInt64(&ais.processingTime)),
atomic.LoadInt64(&ais.bufferSize)
}
// UpdateBufferSize updates the buffer size from adaptive buffer manager
func (ais *AudioInputServer) UpdateBufferSize() {
adaptiveManager := GetAdaptiveBufferManager()
newSize := int64(adaptiveManager.GetInputBufferSize())
atomic.StoreInt64(&ais.bufferSize, newSize)
}
// ReportLatency reports processing latency to adaptive buffer manager
func (ais *AudioInputServer) ReportLatency(latency time.Duration) {
adaptiveManager := GetAdaptiveBufferManager()
adaptiveManager.UpdateLatency(latency)
}
// GetMessagePoolStats returns detailed statistics about the message pool
func (mp *MessagePool) GetMessagePoolStats() MessagePoolStats {
mp.mutex.RLock()
preallocatedCount := len(mp.preallocated)
mp.mutex.RUnlock()
hitCount := atomic.LoadInt64(&mp.hitCount)
missCount := atomic.LoadInt64(&mp.missCount)
totalRequests := hitCount + missCount
var hitRate float64
if totalRequests > 0 {
hitRate = float64(hitCount) / float64(totalRequests) * 100
}
// Calculate channel pool size
channelPoolSize := len(mp.pool)
return MessagePoolStats{
MaxPoolSize: mp.maxPoolSize,
ChannelPoolSize: channelPoolSize,
PreallocatedCount: int64(preallocatedCount),
PreallocatedMax: int64(mp.preallocSize),
HitCount: hitCount,
MissCount: missCount,
HitRate: hitRate,
}
}
// MessagePoolStats provides detailed message pool statistics
type MessagePoolStats struct {
MaxPoolSize int
ChannelPoolSize int
PreallocatedCount int64
PreallocatedMax int64
HitCount int64
MissCount int64
HitRate float64 // Percentage
}
// GetGlobalMessagePoolStats returns statistics for the global message pool
func GetGlobalMessagePoolStats() MessagePoolStats {
return globalMessagePool.GetMessagePoolStats()
}
// Helper functions
// getInputSocketPath returns the path to the input socket
func getInputSocketPath() string {
if path := os.Getenv("JETKVM_AUDIO_INPUT_SOCKET"); path != "" {
return path
}
return filepath.Join("/var/run", inputSocketName)
}