[WIP] Updates: Reduce PR complexity

This commit is contained in:
Alex P 2025-09-05 21:47:21 +00:00
parent 8a189ba1b9
commit 947b4f9528
4 changed files with 10 additions and 468 deletions

View File

@ -230,63 +230,6 @@ var (
},
)
// Audio configuration metrics
audioConfigQuality = promauto.NewGauge(
prometheus.GaugeOpts{
Name: "jetkvm_audio_config_quality",
Help: "Current audio quality setting (0=Low, 1=Medium, 2=High, 3=Ultra)",
},
)
audioConfigBitrate = promauto.NewGauge(
prometheus.GaugeOpts{
Name: "jetkvm_audio_config_bitrate_kbps",
Help: "Current audio bitrate in kbps",
},
)
audioConfigSampleRate = promauto.NewGauge(
prometheus.GaugeOpts{
Name: "jetkvm_audio_config_sample_rate_hz",
Help: "Current audio sample rate in Hz",
},
)
audioConfigChannels = promauto.NewGauge(
prometheus.GaugeOpts{
Name: "jetkvm_audio_config_channels",
Help: "Current audio channel count",
},
)
microphoneConfigQuality = promauto.NewGauge(
prometheus.GaugeOpts{
Name: "jetkvm_microphone_config_quality",
Help: "Current microphone quality setting (0=Low, 1=Medium, 2=High, 3=Ultra)",
},
)
microphoneConfigBitrate = promauto.NewGauge(
prometheus.GaugeOpts{
Name: "jetkvm_microphone_config_bitrate_kbps",
Help: "Current microphone bitrate in kbps",
},
)
microphoneConfigSampleRate = promauto.NewGauge(
prometheus.GaugeOpts{
Name: "jetkvm_microphone_config_sample_rate_hz",
Help: "Current microphone sample rate in Hz",
},
)
microphoneConfigChannels = promauto.NewGauge(
prometheus.GaugeOpts{
Name: "jetkvm_microphone_config_channels",
Help: "Current microphone channel count",
},
)
// Device health metrics
// Removed device health metrics - functionality not used
@ -539,32 +482,6 @@ func UpdateMicrophoneProcessMetrics(metrics ProcessMetrics, isRunning bool) {
atomic.StoreInt64(&lastMetricsUpdate, time.Now().Unix())
}
// UpdateAudioConfigMetrics updates Prometheus metrics with audio configuration
func UpdateAudioConfigMetrics(config AudioConfig) {
metricsUpdateMutex.Lock()
defer metricsUpdateMutex.Unlock()
audioConfigQuality.Set(float64(config.Quality))
audioConfigBitrate.Set(float64(config.Bitrate))
audioConfigSampleRate.Set(float64(config.SampleRate))
audioConfigChannels.Set(float64(config.Channels))
atomic.StoreInt64(&lastMetricsUpdate, time.Now().Unix())
}
// UpdateMicrophoneConfigMetrics updates Prometheus metrics with microphone configuration
func UpdateMicrophoneConfigMetrics(config AudioConfig) {
metricsUpdateMutex.Lock()
defer metricsUpdateMutex.Unlock()
microphoneConfigQuality.Set(float64(config.Quality))
microphoneConfigBitrate.Set(float64(config.Bitrate))
microphoneConfigSampleRate.Set(float64(config.SampleRate))
microphoneConfigChannels.Set(float64(config.Channels))
atomic.StoreInt64(&lastMetricsUpdate, time.Now().Unix())
}
// UpdateAdaptiveBufferMetrics updates Prometheus metrics with adaptive buffer information
func UpdateAdaptiveBufferMetrics(inputBufferSize, outputBufferSize int, cpuPercent, memoryPercent float64, adjustmentMade bool) {
metricsUpdateMutex.Lock()

View File

@ -14,8 +14,6 @@ type MetricsRegistry struct {
mu sync.RWMutex
audioMetrics AudioMetrics
audioInputMetrics AudioInputMetrics
audioConfig AudioConfig
microphoneConfig AudioConfig
lastUpdate int64 // Unix timestamp
}
@ -56,28 +54,6 @@ func (mr *MetricsRegistry) UpdateAudioInputMetrics(metrics AudioInputMetrics) {
UpdateMicrophoneMetrics(convertAudioInputMetricsToUnified(metrics))
}
// UpdateAudioConfig updates the centralized audio configuration
func (mr *MetricsRegistry) UpdateAudioConfig(config AudioConfig) {
mr.mu.Lock()
mr.audioConfig = config
mr.lastUpdate = time.Now().Unix()
mr.mu.Unlock()
// Update Prometheus metrics directly
UpdateAudioConfigMetrics(config)
}
// UpdateMicrophoneConfig updates the centralized microphone configuration
func (mr *MetricsRegistry) UpdateMicrophoneConfig(config AudioConfig) {
mr.mu.Lock()
mr.microphoneConfig = config
mr.lastUpdate = time.Now().Unix()
mr.mu.Unlock()
// Update Prometheus metrics directly
UpdateMicrophoneConfigMetrics(config)
}
// GetAudioMetrics returns the current audio output metrics
func (mr *MetricsRegistry) GetAudioMetrics() AudioMetrics {
mr.mu.RLock()
@ -92,20 +68,6 @@ func (mr *MetricsRegistry) GetAudioInputMetrics() AudioInputMetrics {
return mr.audioInputMetrics
}
// GetAudioConfig returns the current audio configuration
func (mr *MetricsRegistry) GetAudioConfig() AudioConfig {
mr.mu.RLock()
defer mr.mu.RUnlock()
return mr.audioConfig
}
// GetMicrophoneConfig returns the current microphone configuration
func (mr *MetricsRegistry) GetMicrophoneConfig() AudioConfig {
mr.mu.RLock()
defer mr.mu.RUnlock()
return mr.microphoneConfig
}
// GetLastUpdate returns the timestamp of the last metrics update
func (mr *MetricsRegistry) GetLastUpdate() time.Time {
timestamp := atomic.LoadInt64(&mr.lastUpdate)
@ -132,20 +94,11 @@ func (mr *MetricsRegistry) StartMetricsCollector() {
mr.UpdateAudioInputMetrics(metrics)
}
// Collect audio output metrics directly from global metrics variable to avoid circular dependency
audioMetrics := AudioMetrics{
FramesReceived: atomic.LoadInt64(&metrics.FramesReceived),
FramesDropped: atomic.LoadInt64(&metrics.FramesDropped),
BytesProcessed: atomic.LoadInt64(&metrics.BytesProcessed),
ConnectionDrops: atomic.LoadInt64(&metrics.ConnectionDrops),
LastFrameTime: metrics.LastFrameTime,
AverageLatency: metrics.AverageLatency,
}
mr.UpdateAudioMetrics(audioMetrics)
// Collect configuration directly from global variables to avoid circular dependency
mr.UpdateAudioConfig(currentConfig)
mr.UpdateMicrophoneConfig(currentMicrophoneConfig)
// Collect audio output metrics from global audio output manager
// Note: We need to get metrics from the actual audio output system
// For now, we'll use the global metrics variable from quality_presets.go
globalAudioMetrics := GetGlobalAudioMetrics()
mr.UpdateAudioMetrics(globalAudioMetrics)
}
}()
}

View File

@ -1,333 +0,0 @@
package audio
import (
"context"
"sync"
"sync/atomic"
"time"
"github.com/rs/zerolog"
)
// LatencyMonitor tracks and optimizes audio latency in real-time
type LatencyMonitor struct {
// Atomic fields MUST be first for ARM32 alignment (int64 fields need 8-byte alignment)
currentLatency int64 // Current latency in nanoseconds (atomic)
averageLatency int64 // Rolling average latency in nanoseconds (atomic)
minLatency int64 // Minimum observed latency in nanoseconds (atomic)
maxLatency int64 // Maximum observed latency in nanoseconds (atomic)
latencySamples int64 // Number of latency samples collected (atomic)
jitterAccumulator int64 // Accumulated jitter for variance calculation (atomic)
lastOptimization int64 // Timestamp of last optimization in nanoseconds (atomic)
config LatencyConfig
logger zerolog.Logger
// Control channels
ctx context.Context
cancel context.CancelFunc
wg sync.WaitGroup
// Optimization callbacks
optimizationCallbacks []OptimizationCallback
mutex sync.RWMutex
// Performance tracking
latencyHistory []LatencyMeasurement
historyMutex sync.RWMutex
}
// LatencyConfig holds configuration for latency monitoring
type LatencyConfig struct {
TargetLatency time.Duration // Target latency to maintain
MaxLatency time.Duration // Maximum acceptable latency
OptimizationInterval time.Duration // How often to run optimization
HistorySize int // Number of latency measurements to keep
JitterThreshold time.Duration // Jitter threshold for optimization
AdaptiveThreshold float64 // Threshold for adaptive adjustments (0.0-1.0)
}
// LatencyMeasurement represents a single latency measurement
type LatencyMeasurement struct {
Timestamp time.Time
Latency time.Duration
Jitter time.Duration
Source string // Source of the measurement (e.g., "input", "output", "processing")
}
// OptimizationCallback is called when latency optimization is triggered
type OptimizationCallback func(metrics LatencyMetrics) error
// LatencyMetrics provides comprehensive latency statistics
type LatencyMetrics struct {
Current time.Duration
Average time.Duration
Min time.Duration
Max time.Duration
Jitter time.Duration
SampleCount int64
Trend LatencyTrend
}
// LatencyTrend indicates the direction of latency changes
type LatencyTrend int
const (
LatencyTrendStable LatencyTrend = iota
LatencyTrendIncreasing
LatencyTrendDecreasing
LatencyTrendVolatile
)
// DefaultLatencyConfig returns a sensible default configuration
func DefaultLatencyConfig() LatencyConfig {
config := GetConfig()
return LatencyConfig{
TargetLatency: config.LatencyMonitorTarget,
MaxLatency: config.MaxLatencyThreshold,
OptimizationInterval: config.LatencyOptimizationInterval,
HistorySize: config.LatencyHistorySize,
JitterThreshold: config.JitterThreshold,
AdaptiveThreshold: config.LatencyAdaptiveThreshold,
}
}
// NewLatencyMonitor creates a new latency monitoring system
func NewLatencyMonitor(config LatencyConfig, logger zerolog.Logger) *LatencyMonitor {
// Validate latency configuration
if err := ValidateLatencyConfig(config); err != nil {
// Log validation error and use default configuration
logger.Error().Err(err).Msg("Invalid latency configuration provided, using defaults")
config = DefaultLatencyConfig()
}
ctx, cancel := context.WithCancel(context.Background())
return &LatencyMonitor{
config: config,
logger: logger.With().Str("component", "latency-monitor").Logger(),
ctx: ctx,
cancel: cancel,
latencyHistory: make([]LatencyMeasurement, 0, config.HistorySize),
minLatency: int64(time.Hour), // Initialize to high value
}
}
// Start begins latency monitoring and optimization
func (lm *LatencyMonitor) Start() {
lm.wg.Add(1)
go lm.monitoringLoop()
}
// Stop stops the latency monitor
func (lm *LatencyMonitor) Stop() {
lm.cancel()
lm.wg.Wait()
}
// RecordLatency records a new latency measurement
func (lm *LatencyMonitor) RecordLatency(latency time.Duration, source string) {
now := time.Now()
latencyNanos := latency.Nanoseconds()
// Update atomic counters
atomic.StoreInt64(&lm.currentLatency, latencyNanos)
atomic.AddInt64(&lm.latencySamples, 1)
// Update min/max
for {
oldMin := atomic.LoadInt64(&lm.minLatency)
if latencyNanos >= oldMin || atomic.CompareAndSwapInt64(&lm.minLatency, oldMin, latencyNanos) {
break
}
}
for {
oldMax := atomic.LoadInt64(&lm.maxLatency)
if latencyNanos <= oldMax || atomic.CompareAndSwapInt64(&lm.maxLatency, oldMax, latencyNanos) {
break
}
}
// Update rolling average using exponential moving average
oldAvg := atomic.LoadInt64(&lm.averageLatency)
newAvg := oldAvg + (latencyNanos-oldAvg)/10 // Alpha = 0.1
atomic.StoreInt64(&lm.averageLatency, newAvg)
// Calculate jitter (difference from average)
jitter := latencyNanos - newAvg
if jitter < 0 {
jitter = -jitter
}
atomic.AddInt64(&lm.jitterAccumulator, jitter)
// Store in history
lm.historyMutex.Lock()
measurement := LatencyMeasurement{
Timestamp: now,
Latency: latency,
Jitter: time.Duration(jitter),
Source: source,
}
if len(lm.latencyHistory) >= lm.config.HistorySize {
// Remove oldest measurement
copy(lm.latencyHistory, lm.latencyHistory[1:])
lm.latencyHistory[len(lm.latencyHistory)-1] = measurement
} else {
lm.latencyHistory = append(lm.latencyHistory, measurement)
}
lm.historyMutex.Unlock()
}
// GetMetrics returns current latency metrics
func (lm *LatencyMonitor) GetMetrics() LatencyMetrics {
current := atomic.LoadInt64(&lm.currentLatency)
average := atomic.LoadInt64(&lm.averageLatency)
min := atomic.LoadInt64(&lm.minLatency)
max := atomic.LoadInt64(&lm.maxLatency)
samples := atomic.LoadInt64(&lm.latencySamples)
jitterSum := atomic.LoadInt64(&lm.jitterAccumulator)
var jitter time.Duration
if samples > 0 {
jitter = time.Duration(jitterSum / samples)
}
return LatencyMetrics{
Current: time.Duration(current),
Average: time.Duration(average),
Min: time.Duration(min),
Max: time.Duration(max),
Jitter: jitter,
SampleCount: samples,
Trend: lm.calculateTrend(),
}
}
// AddOptimizationCallback adds a callback for latency optimization
func (lm *LatencyMonitor) AddOptimizationCallback(callback OptimizationCallback) {
lm.mutex.Lock()
lm.optimizationCallbacks = append(lm.optimizationCallbacks, callback)
lm.mutex.Unlock()
}
// monitoringLoop runs the main monitoring and optimization loop
func (lm *LatencyMonitor) monitoringLoop() {
defer lm.wg.Done()
ticker := time.NewTicker(lm.config.OptimizationInterval)
defer ticker.Stop()
for {
select {
case <-lm.ctx.Done():
return
case <-ticker.C:
lm.runOptimization()
}
}
}
// runOptimization checks if optimization is needed and triggers callbacks with threshold validation.
//
// Validation Rules:
// - Current latency must not exceed MaxLatency (default: 200ms)
// - Average latency checked against adaptive threshold: TargetLatency * (1 + AdaptiveThreshold)
// - Jitter must not exceed JitterThreshold (default: 20ms)
// - All latency values must be non-negative durations
//
// Optimization Triggers:
// - Current latency > MaxLatency: Immediate optimization needed
// - Average latency > adaptive threshold: Gradual optimization needed
// - Jitter > JitterThreshold: Stability optimization needed
//
// Threshold Calculations:
// - Adaptive threshold = TargetLatency * (1.0 + AdaptiveThreshold)
// - Default: 50ms * (1.0 + 0.8) = 90ms adaptive threshold
// - Provides buffer above target before triggering optimization
//
// The function ensures real-time audio performance by monitoring multiple
// latency metrics and triggering optimization callbacks when thresholds are exceeded.
func (lm *LatencyMonitor) runOptimization() {
metrics := lm.GetMetrics()
// Check if optimization is needed
needsOptimization := false
// Check if current latency exceeds threshold
if metrics.Current > lm.config.MaxLatency {
needsOptimization = true
lm.logger.Warn().Dur("current_latency", metrics.Current).Dur("max_latency", lm.config.MaxLatency).Msg("latency exceeds maximum threshold")
}
// Check if average latency is above adaptive threshold
adaptiveThreshold := time.Duration(float64(lm.config.TargetLatency.Nanoseconds()) * (1.0 + lm.config.AdaptiveThreshold))
if metrics.Average > adaptiveThreshold {
needsOptimization = true
}
// Check if jitter is too high
if metrics.Jitter > lm.config.JitterThreshold {
needsOptimization = true
}
if needsOptimization {
atomic.StoreInt64(&lm.lastOptimization, time.Now().UnixNano())
// Run optimization callbacks
lm.mutex.RLock()
callbacks := make([]OptimizationCallback, len(lm.optimizationCallbacks))
copy(callbacks, lm.optimizationCallbacks)
lm.mutex.RUnlock()
for _, callback := range callbacks {
if err := callback(metrics); err != nil {
lm.logger.Error().Err(err).Msg("optimization callback failed")
}
}
}
}
// calculateTrend analyzes recent latency measurements to determine trend
func (lm *LatencyMonitor) calculateTrend() LatencyTrend {
lm.historyMutex.RLock()
defer lm.historyMutex.RUnlock()
if len(lm.latencyHistory) < 10 {
return LatencyTrendStable
}
// Analyze last 10 measurements
recentMeasurements := lm.latencyHistory[len(lm.latencyHistory)-10:]
var increasing, decreasing int
for i := 1; i < len(recentMeasurements); i++ {
if recentMeasurements[i].Latency > recentMeasurements[i-1].Latency {
increasing++
} else if recentMeasurements[i].Latency < recentMeasurements[i-1].Latency {
decreasing++
}
}
// Determine trend based on direction changes
if increasing > 6 {
return LatencyTrendIncreasing
} else if decreasing > 6 {
return LatencyTrendDecreasing
} else if increasing+decreasing > 7 {
return LatencyTrendVolatile
}
return LatencyTrendStable
}
// GetLatencyHistory returns a copy of recent latency measurements
func (lm *LatencyMonitor) GetLatencyHistory() []LatencyMeasurement {
lm.historyMutex.RLock()
defer lm.historyMutex.RUnlock()
history := make([]LatencyMeasurement, len(lm.latencyHistory))
copy(history, lm.latencyHistory)
return history
}

View File

@ -330,6 +330,11 @@ func GetMicrophoneConfig() AudioConfig {
return currentMicrophoneConfig
}
// GetGlobalAudioMetrics returns the current global audio metrics
func GetGlobalAudioMetrics() AudioMetrics {
return metrics
}
// Batched metrics to reduce atomic operations frequency
var (
batchedFramesReceived int64