[WIP] Updates / FIles reorg: reduce PR complexity

This commit is contained in:
Alex P 2025-09-05 21:34:23 +00:00
parent d3bbe1bf0a
commit 8a189ba1b9
21 changed files with 432 additions and 99 deletions

View File

@ -143,23 +143,23 @@ type AudioConfigConstants struct {
CGOMaxPacketSize int
// Input IPC Constants - Configuration for audio input inter-process communication
// Used in: input_ipc.go for microphone audio capture and processing
// Used in: ipc_input.go for microphone audio capture and processing
// Impact: Controls audio input quality and processing efficiency
// InputIPCSampleRate defines sample rate for input IPC audio processing (Hz).
// Used in: input_ipc.go for microphone capture configuration
// Used in: ipc_input.go for microphone capture configuration
// Impact: Must match microphone capabilities and encoding requirements.
// Default 48000Hz provides professional quality microphone input.
InputIPCSampleRate int
// InputIPCChannels defines channel count for input IPC audio processing.
// Used in: input_ipc.go for microphone channel configuration
// Used in: ipc_input.go for microphone channel configuration
// Impact: Stereo (2) captures spatial audio, mono (1) reduces processing.
// Default 2 (stereo) supports full microphone array capabilities.
InputIPCChannels int
// InputIPCFrameSize defines frame size for input IPC processing (samples).
// Used in: input_ipc.go for microphone frame processing
// Used in: ipc_input.go for microphone frame processing
// Impact: Larger frames reduce overhead but increase input latency.
// Default 960 samples (20ms at 48kHz) balances latency and efficiency.
InputIPCFrameSize int
@ -209,36 +209,36 @@ type AudioConfigConstants struct {
SocketMinBuffer int
// Scheduling Policy Constants - Linux process scheduling policies for audio threads
// Used in: process_monitor.go for configuring thread scheduling behavior
// Used in: monitor_process.go for configuring thread scheduling behavior
// Impact: Controls how audio threads are scheduled by the Linux kernel
// Removed unused scheduling policy constants and RT priority values
// The priority scheduler is not implemented - functions are called but don't exist
// Process Management - Configuration for audio process lifecycle management
// Used in: supervisor.go for managing audio process restarts and recovery
// Used in: output_supervisor.go for managing audio process restarts and recovery
// Impact: Controls system resilience and recovery from audio process failures
// MaxRestartAttempts defines maximum number of restart attempts for failed processes.
// Used in: supervisor.go for limiting restart attempts to prevent infinite loops
// Used in: output_supervisor.go for limiting restart attempts to prevent infinite loops
// Impact: Higher values increase resilience but may mask persistent problems.
// Default 5 attempts allows recovery from transient issues while detecting persistent failures.
MaxRestartAttempts int
// RestartWindow defines time window for counting restart attempts.
// Used in: supervisor.go for restart attempt rate limiting
// Used in: output_supervisor.go for restart attempt rate limiting
// Impact: Longer windows allow more restart attempts but slower failure detection.
// Default 5 minutes provides reasonable window for transient issue recovery.
RestartWindow time.Duration
// RestartDelay defines initial delay before restarting failed processes.
// Used in: supervisor.go for implementing restart backoff strategy
// Used in: output_supervisor.go for implementing restart backoff strategy
// Impact: Longer delays reduce restart frequency but increase recovery time.
// Default 2 seconds allows brief recovery time without excessive delay.
RestartDelay time.Duration
// MaxRestartDelay defines maximum delay between restart attempts.
// Used in: supervisor.go for capping exponential backoff delays
// Used in: output_supervisor.go for capping exponential backoff delays
// Impact: Prevents excessively long delays while maintaining backoff benefits.
// Default 30 seconds caps restart delays at reasonable maximum.
MaxRestartDelay time.Duration
@ -248,13 +248,13 @@ type AudioConfigConstants struct {
// Impact: Controls memory usage, allocation efficiency, and processing performance
// PreallocSize defines size of preallocated memory pools (bytes).
// Used in: buffer_pool.go for initial memory pool allocation
// Used in: util_buffer_pool.go for initial memory pool allocation
// Impact: Larger pools reduce allocation overhead but increase memory usage.
// Default 1MB (1024*1024) provides good balance for typical audio workloads.
PreallocSize int
// MaxPoolSize defines maximum number of objects in memory pools.
// Used in: buffer_pool.go for limiting pool growth
// Used in: util_buffer_pool.go for limiting pool growth
// Impact: Larger pools reduce allocation frequency but increase memory usage.
// Default 100 objects provides good balance between performance and memory.
MaxPoolSize int
@ -290,13 +290,13 @@ type AudioConfigConstants struct {
ChannelBufferSize int
// AudioFramePoolSize defines size of audio frame object pools.
// Used in: buffer_pool.go for audio frame allocation
// Used in: util_buffer_pool.go for audio frame allocation
// Impact: Larger pools reduce allocation overhead for frame processing.
// Default 1500 frames handles typical audio frame throughput efficiently.
AudioFramePoolSize int
// PageSize defines memory page size for alignment and allocation (bytes).
// Used in: buffer_pool.go for memory-aligned allocations
// Used in: util_buffer_pool.go for memory-aligned allocations
// Impact: Must match system page size for optimal memory performance.
// Default 4096 bytes matches typical Linux page size.
PageSize int
@ -332,61 +332,61 @@ type AudioConfigConstants struct {
MinBatchSizeForThreadPinning int
// GoroutineMonitorInterval defines the interval for monitoring goroutine counts.
// Used in: goroutine_monitor.go for periodic goroutine count checks.
// Used in: monitor_goroutine.go for periodic goroutine count checks.
// Impact: Shorter intervals provide more frequent monitoring but increase overhead.
// Default 30 seconds provides reasonable monitoring frequency with minimal overhead.
GoroutineMonitorInterval time.Duration
// IPC Configuration - Inter-Process Communication settings for audio components
// Used in: ipc.go for configuring audio process communication
// Used in: ipc_output.go for configuring audio process communication
// Impact: Controls IPC reliability, performance, and protocol compliance
// MagicNumber defines magic number for IPC message validation.
// Used in: ipc.go for message header validation and protocol compliance
// Used in: ipc_output.go for message header validation and protocol compliance
// Impact: Must match expected value to prevent protocol errors.
// Default 0xDEADBEEF provides distinctive pattern for message validation.
MagicNumber uint32
// MaxFrameSize defines maximum frame size for IPC messages (bytes).
// Used in: ipc.go for message size validation and buffer allocation
// Used in: ipc_output.go for message size validation and buffer allocation
// Impact: Must accommodate largest expected audio frame to prevent truncation.
// Default 4096 bytes handles typical audio frames with safety margin.
MaxFrameSize int
// WriteTimeout defines timeout for IPC write operations.
// Used in: ipc.go for preventing blocking on slow IPC operations
// Used in: ipc_output.go for preventing blocking on slow IPC operations
// Impact: Shorter timeouts improve responsiveness but may cause message drops.
// Default 5 seconds allows for system load while preventing indefinite blocking.
WriteTimeout time.Duration
// MaxDroppedFrames defines maximum consecutive dropped frames before error.
// Used in: ipc.go for IPC quality monitoring
// Used in: ipc_output.go for IPC quality monitoring
// Impact: Higher values tolerate more IPC issues but may mask problems.
// Default 10 frames allows brief interruptions while detecting serious issues.
// HeaderSize defines size of IPC message headers (bytes).
// Used in: ipc.go for message parsing and buffer allocation
// Used in: ipc_output.go for message parsing and buffer allocation
// Impact: Must match actual header size to prevent parsing errors.
// Default 8 bytes matches current IPC message header format.
HeaderSize int
// Monitoring and Metrics - Configuration for audio performance monitoring
// Used in: metrics.go, latency_monitor.go for performance tracking
// Used in: core_metrics.go, monitor_latency.go for performance tracking
// Impact: Controls monitoring accuracy, overhead, and data retention
// MetricsUpdateInterval defines frequency of metrics collection and reporting.
// Used in: metrics.go for periodic metrics updates
// Used in: core_metrics.go for periodic metrics updates
// Impact: Shorter intervals provide more accurate monitoring but increase overhead.
// Default 1000ms (1 second) provides good balance between accuracy and performance.
MetricsUpdateInterval time.Duration
// EMAAlpha defines smoothing factor for Exponential Moving Average calculations.
// Used in: metrics.go for smoothing performance metrics
// Used in: core_metrics.go for smoothing performance metrics
// Impact: Higher values respond faster to changes but are more sensitive to noise.
// Default 0.1 provides good smoothing while maintaining responsiveness.
// WarmupSamples defines number of samples to collect before reporting metrics.
// Used in: metrics.go for avoiding inaccurate initial measurements
// Used in: core_metrics.go for avoiding inaccurate initial measurements
// Impact: More samples improve initial accuracy but delay metric availability.
// Default 10 samples provides good initial accuracy without excessive delay.
WarmupSamples int
@ -397,23 +397,23 @@ type AudioConfigConstants struct {
// Default 5 seconds prevents log flooding while maintaining visibility.
// MetricsChannelBuffer defines buffer size for metrics data channels.
// Used in: metrics.go for metrics data collection pipelines
// Used in: core_metrics.go for metrics data collection pipelines
// Impact: Larger buffers reduce blocking but increase memory usage and latency.
// Default 100 metrics provides good balance for metrics collection.
MetricsChannelBuffer int
// LatencyHistorySize defines number of latency measurements to retain.
// Used in: latency_monitor.go for latency trend analysis
// Used in: monitor_latency.go for latency trend analysis
// Impact: More history improves trend analysis but increases memory usage.
// Default 100 measurements provides good history for analysis.
LatencyHistorySize int
// Process Monitoring Constants - System resource monitoring configuration
// Used in: process_monitor.go for monitoring CPU, memory, and system resources
// Used in: monitor_process.go for monitoring CPU, memory, and system resources
// Impact: Controls resource monitoring accuracy and system compatibility
// MaxCPUPercent defines maximum valid CPU percentage value.
// Used in: process_monitor.go for CPU usage validation
// Used in: monitor_process.go for CPU usage validation
// Impact: Values above this are considered invalid and filtered out.
// Default 100.0 represents 100% CPU usage as maximum valid value.
MaxCPUPercent float64
@ -425,37 +425,37 @@ type AudioConfigConstants struct {
MinCPUPercent float64
// DefaultClockTicks defines default system clock ticks per second.
// Used in: process_monitor.go for CPU time calculations on embedded systems
// Used in: monitor_process.go for CPU time calculations on embedded systems
// Impact: Must match system configuration for accurate CPU measurements.
// Default 250.0 matches typical embedded ARM system configuration.
DefaultClockTicks float64
// DefaultMemoryGB defines default system memory size in gigabytes.
// Used in: process_monitor.go for memory percentage calculations
// Used in: monitor_process.go for memory percentage calculations
// Impact: Should match actual system memory for accurate percentage calculations.
// Default 8 GB represents typical JetKVM system memory configuration.
DefaultMemoryGB int
// MaxWarmupSamples defines maximum number of warmup samples for monitoring.
// Used in: process_monitor.go for initial measurement stabilization
// Used in: monitor_process.go for initial measurement stabilization
// Impact: More samples improve initial accuracy but delay monitoring start.
// Default 3 samples provides quick stabilization without excessive delay.
MaxWarmupSamples int
// WarmupCPUSamples defines number of CPU samples for warmup period.
// Used in: process_monitor.go for CPU measurement stabilization
// Used in: monitor_process.go for CPU measurement stabilization
// Impact: More samples improve CPU measurement accuracy during startup.
// Default 2 samples provides basic CPU measurement stabilization.
WarmupCPUSamples int
// LogThrottleIntervalSec defines log throttle interval in seconds.
// Used in: process_monitor.go for controlling monitoring log frequency
// Used in: monitor_process.go for controlling monitoring log frequency
// Impact: Longer intervals reduce log volume but may miss monitoring events.
// Default 10 seconds provides reasonable monitoring log frequency.
LogThrottleIntervalSec int
// MinValidClockTicks defines minimum valid system clock ticks value.
// Used in: process_monitor.go for system clock validation
// Used in: monitor_process.go for system clock validation
// Impact: Values below this indicate system configuration issues.
// Default 50 ticks represents minimum reasonable system clock configuration.
MinValidClockTicks int
@ -467,63 +467,63 @@ type AudioConfigConstants struct {
MaxValidClockTicks int
// Performance Tuning - Thresholds for adaptive audio quality and resource management
// Used in: adaptive_optimizer.go, quality_manager.go for performance optimization
// Used in: monitor_adaptive_optimizer.go, quality_manager.go for performance optimization
// Impact: Controls when audio quality adjustments are triggered based on system load
// CPUThresholdLow defines CPU usage threshold for low system load.
// Used in: adaptive_optimizer.go for triggering quality improvements
// Used in: monitor_adaptive_optimizer.go for triggering quality improvements
// Impact: Below this threshold, audio quality can be increased safely.
// Default 20% allows quality improvements when system has spare capacity.
// CPUThresholdMedium defines CPU usage threshold for medium system load.
// Used in: adaptive_optimizer.go for maintaining current quality
// Used in: monitor_adaptive_optimizer.go for maintaining current quality
// Impact: Between low and medium thresholds, quality remains stable.
// Default 60% represents balanced system load where quality should be maintained.
// CPUThresholdHigh defines CPU usage threshold for high system load.
// Used in: adaptive_optimizer.go for triggering quality reductions
// Used in: monitor_adaptive_optimizer.go for triggering quality reductions
// Impact: Above this threshold, audio quality is reduced to preserve performance.
// Default 75% prevents system overload by reducing audio processing demands.
// MemoryThresholdLow defines memory usage threshold for low memory pressure.
// Used in: adaptive_optimizer.go for memory-based quality decisions
// Used in: monitor_adaptive_optimizer.go for memory-based quality decisions
// Impact: Below this threshold, memory-intensive audio features can be enabled.
// Default 30% allows enhanced features when memory is abundant.
// MemoryThresholdMed defines memory usage threshold for medium memory pressure.
// Used in: adaptive_optimizer.go for balanced memory management
// Used in: monitor_adaptive_optimizer.go for balanced memory management
// Impact: Between low and medium thresholds, memory usage is monitored closely.
// Default 60% represents moderate memory pressure requiring careful management.
// MemoryThresholdHigh defines memory usage threshold for high memory pressure.
// Used in: adaptive_optimizer.go for aggressive memory conservation
// Used in: monitor_adaptive_optimizer.go for aggressive memory conservation
// Impact: Above this threshold, memory usage is minimized by reducing quality.
// Default 80% triggers aggressive memory conservation to prevent system issues.
// LatencyThresholdLow defines acceptable latency for high-quality audio.
// Used in: adaptive_optimizer.go for latency-based quality decisions
// Used in: monitor_adaptive_optimizer.go for latency-based quality decisions
// Impact: Below this threshold, audio quality can be maximized.
// Default 20ms represents excellent latency allowing maximum quality.
// LatencyThresholdHigh defines maximum acceptable latency before quality reduction.
// Used in: adaptive_optimizer.go for preventing excessive audio delay
// Used in: monitor_adaptive_optimizer.go for preventing excessive audio delay
// Impact: Above this threshold, quality is reduced to improve latency.
// Default 50ms represents maximum acceptable latency for real-time audio.
// CPUFactor defines weighting factor for CPU usage in performance calculations.
// Used in: adaptive_optimizer.go for balancing CPU impact in optimization decisions
// Used in: monitor_adaptive_optimizer.go for balancing CPU impact in optimization decisions
// Impact: Higher values make CPU usage more influential in performance tuning.
// Default 0.5 provides balanced CPU consideration in optimization algorithms.
CPUFactor float64
// MemoryFactor defines weighting factor for memory usage in performance calculations.
// Used in: adaptive_optimizer.go for balancing memory impact in optimization decisions
// Used in: monitor_adaptive_optimizer.go for balancing memory impact in optimization decisions
// Impact: Higher values make memory usage more influential in performance tuning.
// Default 0.3 provides moderate memory consideration in optimization algorithms.
MemoryFactor float64
// LatencyFactor defines weighting factor for latency in performance calculations.
// Used in: adaptive_optimizer.go for balancing latency impact in optimization decisions
// Used in: monitor_adaptive_optimizer.go for balancing latency impact in optimization decisions
// Impact: Higher values make latency more influential in performance tuning.
// Default 0.2 provides latency consideration while prioritizing CPU and memory.
LatencyFactor float64
@ -539,7 +539,7 @@ type AudioConfigConstants struct {
// Default 2048 bytes accommodates larger output buffers typical in audio processing.
// TargetLevel defines target performance level for optimization algorithms.
// Used in: adaptive_optimizer.go for setting optimization goals
// Used in: monitor_adaptive_optimizer.go for setting optimization goals
// Impact: Higher values aim for better performance but may increase resource usage.
// Default 0.8 (80%) provides good performance while maintaining system stability.
@ -666,18 +666,18 @@ type AudioConfigConstants struct {
DefaultTickerInterval time.Duration // 100ms
// BufferUpdateInterval defines frequency of buffer status updates.
// Used in: buffer_pool.go and adaptive_buffer.go for buffer management
// Used in: util_buffer_pool.go and adaptive_buffer.go for buffer management
// Impact: More frequent updates improve responsiveness but increase overhead.
// Default 500ms provides adequate buffer monitoring without excessive overhead.
BufferUpdateInterval time.Duration // 500ms
// StatsUpdateInterval defines frequency of statistics collection and reporting.
// Used in: metrics.go for performance statistics updates
// Used in: core_metrics.go for performance statistics updates
// Impact: More frequent updates provide better monitoring but increase overhead.
// Default 5s provides comprehensive statistics without performance impact.
// SupervisorTimeout defines timeout for supervisor process operations.
// Used in: supervisor.go for process monitoring and control
// Used in: output_supervisor.go for process monitoring and control
// Impact: Shorter timeouts improve responsiveness but may cause false timeouts.
// Default 10s provides adequate time for supervisor operations.
SupervisorTimeout time.Duration // 10s
@ -689,7 +689,7 @@ type AudioConfigConstants struct {
InputSupervisorTimeout time.Duration // 5s
// OutputSupervisorTimeout defines timeout for output supervisor operations.
// Used in: supervisor.go for output process monitoring
// Used in: output_supervisor.go for output process monitoring
// Impact: Shorter timeouts improve output responsiveness but may cause false timeouts.
// Default 5s provides responsive output monitoring.
OutputSupervisorTimeout time.Duration // 5s
@ -711,13 +711,13 @@ type AudioConfigConstants struct {
BatchProcessingDelay time.Duration // 10ms
// AdaptiveOptimizerStability defines stability period for adaptive optimization.
// Used in: adaptive_optimizer.go for optimization stability control
// Used in: monitor_adaptive_optimizer.go for optimization stability control
// Impact: Longer periods provide more stable optimization but slower adaptation.
// Default 10s provides good balance between stability and adaptability.
AdaptiveOptimizerStability time.Duration // 10s
// LatencyMonitorTarget defines target latency for latency monitoring system.
// Used in: latency_monitor.go for latency optimization goals and threshold monitoring
// Used in: monitor_latency.go for latency optimization goals and threshold monitoring
// Impact: Lower targets improve audio responsiveness but may increase system load.
// Default 50ms provides excellent real-time audio performance target.
LatencyMonitorTarget time.Duration // 50ms
@ -757,51 +757,51 @@ type AudioConfigConstants struct {
AdaptiveBufferTargetLatency time.Duration // 20ms target latency
// Adaptive Optimizer Configuration - Settings for performance optimization
// Used in: adaptive_optimizer.go for system performance optimization
// Used in: monitor_adaptive_optimizer.go for system performance optimization
// Impact: Controls optimization behavior and stability
// CooldownPeriod defines minimum time between optimization adjustments.
// Used in: adaptive_optimizer.go for preventing optimization oscillation
// Used in: monitor_adaptive_optimizer.go for preventing optimization oscillation
// Impact: Longer periods provide more stable optimization but slower adaptation.
// Default 30s prevents rapid optimization changes that could destabilize system.
CooldownPeriod time.Duration // 30s cooldown period
// RollbackThreshold defines latency threshold for optimization rollback.
// Used in: adaptive_optimizer.go for detecting failed optimizations
// Used in: monitor_adaptive_optimizer.go for detecting failed optimizations
// Impact: Lower thresholds trigger faster rollback but may be too sensitive.
// Default 300ms provides clear indication of optimization failure.
RollbackThreshold time.Duration // 300ms rollback threshold
// AdaptiveOptimizerLatencyTarget defines target latency for adaptive optimizer.
// Used in: adaptive_optimizer.go for optimization target setting
// Used in: monitor_adaptive_optimizer.go for optimization target setting
// Impact: Lower targets improve responsiveness but may increase system load.
// Default 50ms provides good balance between performance and stability.
AdaptiveOptimizerLatencyTarget time.Duration // 50ms latency target
// Latency Monitor Configuration - Settings for latency monitoring and analysis
// Used in: latency_monitor.go for latency tracking and alerting
// Used in: monitor_latency.go for latency tracking and alerting
// Impact: Controls latency monitoring sensitivity and thresholds
// MaxLatencyThreshold defines maximum acceptable latency before alerts.
// Used in: latency_monitor.go for latency violation detection
// Used in: monitor_latency.go for latency violation detection
// Impact: Lower values provide stricter latency enforcement.
// Default 200ms defines clear boundary for unacceptable latency.
MaxLatencyThreshold time.Duration // 200ms max latency
// JitterThreshold defines maximum acceptable latency variation.
// Used in: latency_monitor.go for jitter detection and monitoring
// Used in: monitor_latency.go for jitter detection and monitoring
// Impact: Lower values detect smaller latency variations.
// Default 20ms provides good jitter detection for audio quality.
JitterThreshold time.Duration // 20ms jitter threshold
// LatencyOptimizationInterval defines interval for latency optimization cycles.
// Used in: latency_monitor.go for optimization timing control
// Used in: monitor_latency.go for optimization timing control
// Impact: Controls frequency of latency optimization adjustments.
// Default 5s provides balanced optimization without excessive overhead.
LatencyOptimizationInterval time.Duration // 5s optimization interval
// LatencyAdaptiveThreshold defines threshold for adaptive latency adjustments.
// Used in: latency_monitor.go for adaptive optimization decisions
// Used in: monitor_latency.go for adaptive optimization decisions
// Impact: Controls sensitivity of adaptive latency optimization.
// Default 0.8 (80%) provides good balance between stability and adaptation.
LatencyAdaptiveThreshold float64 // 0.8 adaptive threshold
@ -836,26 +836,26 @@ type AudioConfigConstants struct {
// Default 19 provides maximum priority reduction capability.
// Buffer Pool Configuration - Settings for memory pool preallocation
// Used in: buffer_pool.go for memory pool management
// Used in: util_buffer_pool.go for memory pool management
// Impact: Controls memory preallocation strategy and efficiency
// PreallocPercentage defines percentage of buffers to preallocate.
// Used in: buffer_pool.go for initial memory pool sizing
// Used in: util_buffer_pool.go for initial memory pool sizing
// Impact: Higher values reduce allocation overhead but increase memory usage.
// Default 20% provides good balance between performance and memory efficiency.
PreallocPercentage int // 20% preallocation percentage
// InputPreallocPercentage defines percentage of input buffers to preallocate.
// Used in: buffer_pool.go for input-specific memory pool sizing
// Used in: util_buffer_pool.go for input-specific memory pool sizing
// Impact: Higher values improve input performance but increase memory usage.
// Default 30% provides enhanced input performance with reasonable memory usage.
// Exponential Moving Average Configuration - Settings for statistical smoothing
// Used in: metrics.go and various monitoring components
// Used in: core_metrics.go and various monitoring components
// Impact: Controls smoothing behavior for performance metrics
// HistoricalWeight defines weight given to historical data in EMA calculations.
// Used in: metrics.go for exponential moving average calculations
// Used in: core_metrics.go for exponential moving average calculations
// Impact: Higher values provide more stable metrics but slower response to changes.
// Default 70% provides good stability while maintaining responsiveness.
@ -880,17 +880,17 @@ type AudioConfigConstants struct {
BackoffStart time.Duration // 50ms initial backoff
// Protocol Magic Numbers - Unique identifiers for IPC message validation
// Used in: ipc.go, input_ipc.go for message protocol validation
// Used in: ipc_input.go for message protocol validation
// Impact: Must match expected values to ensure proper message routing
// InputMagicNumber defines magic number for input IPC messages.
// Used in: input_ipc.go for input message validation
// Used in: ipc_input.go for input message validation
// Impact: Must match expected value to prevent input protocol errors.
// Default 0x4A4B4D49 "JKMI" (JetKVM Microphone Input) provides distinctive input identifier.
InputMagicNumber uint32
// OutputMagicNumber defines magic number for output IPC messages.
// Used in: ipc.go for output message validation
// Used in: ipc_output.go for output message validation
// Impact: Must match expected value to prevent output protocol errors.
// Default 0x4A4B4F55 "JKOU" (JetKVM Output) provides distinctive output identifier.
OutputMagicNumber uint32
@ -900,13 +900,13 @@ type AudioConfigConstants struct {
// Impact: Controls precision and behavior of audio processing algorithms
// PercentageMultiplier defines multiplier for percentage calculations.
// Used in: metrics.go, process_monitor.go for percentage conversions
// Used in: core_metrics.go, monitor_process.go for percentage conversions
// Impact: Must be 100.0 for accurate percentage calculations.
// Default 100.0 provides standard percentage calculation base.
PercentageMultiplier float64
// AveragingWeight defines weight for weighted averaging calculations.
// Used in: metrics.go for exponential moving averages
// Used in: core_metrics.go for exponential moving averages
// Impact: Higher values emphasize historical data more heavily.
// Default 0.7 provides good balance between stability and responsiveness.
AveragingWeight float64
@ -924,37 +924,37 @@ type AudioConfigConstants struct {
SmoothingFactor float64
// CPUMemoryWeight defines weight for CPU factor in combined calculations.
// Used in: adaptive_optimizer.go for balancing CPU vs memory considerations
// Used in: monitor_adaptive_optimizer.go for balancing CPU vs memory considerations
// Impact: Higher values prioritize CPU optimization over memory optimization.
// Default 0.5 provides equal weighting between CPU and memory factors.
CPUMemoryWeight float64
// MemoryWeight defines weight for memory factor in combined calculations.
// Used in: adaptive_optimizer.go for memory impact weighting
// Used in: monitor_adaptive_optimizer.go for memory impact weighting
// Impact: Higher values make memory usage more influential in decisions.
// Default 0.3 provides moderate memory consideration in optimization.
MemoryWeight float64
// LatencyWeight defines weight for latency factor in combined calculations.
// Used in: adaptive_optimizer.go for latency impact weighting
// Used in: monitor_adaptive_optimizer.go for latency impact weighting
// Impact: Higher values prioritize latency optimization over resource usage.
// Default 0.2 provides latency consideration while prioritizing resources.
LatencyWeight float64
// PoolGrowthMultiplier defines multiplier for pool size growth.
// Used in: buffer_pool.go for pool expansion calculations
// Used in: util_buffer_pool.go for pool expansion calculations
// Impact: Higher values cause more aggressive pool growth.
// Default 2 provides standard doubling growth pattern.
PoolGrowthMultiplier int
// LatencyScalingFactor defines scaling factor for latency ratio calculations.
// Used in: latency_monitor.go for latency scaling operations
// Used in: monitor_latency.go for latency scaling operations
// Impact: Higher values amplify latency differences in calculations.
// Default 2.0 provides moderate latency scaling for monitoring.
LatencyScalingFactor float64
// OptimizerAggressiveness defines aggressiveness level for optimization algorithms.
// Used in: adaptive_optimizer.go for optimization behavior control
// Used in: monitor_adaptive_optimizer.go for optimization behavior control
// Impact: Higher values cause more aggressive optimization changes.
// Default 0.7 provides assertive optimization while maintaining stability.
OptimizerAggressiveness float64
@ -1070,35 +1070,35 @@ type AudioConfigConstants struct {
FrontendDebugIntervalMS int
// Process Monitor Constants - System resource monitoring configuration
// Used in: process_monitor.go for system resource tracking
// Used in: monitor_process.go for system resource tracking
// Impact: Controls process monitoring behavior and system compatibility
// ProcessMonitorDefaultMemoryGB defines default memory size for fallback calculations.
// Used in: process_monitor.go when system memory cannot be detected
// Used in: monitor_process.go when system memory cannot be detected
// Impact: Should approximate actual system memory for accurate calculations.
// Default 4GB provides reasonable fallback for typical embedded systems.
ProcessMonitorDefaultMemoryGB int
// ProcessMonitorKBToBytes defines conversion factor from kilobytes to bytes.
// Used in: process_monitor.go for memory unit conversions
// Used in: monitor_process.go for memory unit conversions
// Impact: Must be 1024 for accurate binary unit conversions.
// Default 1024 provides standard binary conversion factor.
ProcessMonitorKBToBytes int
// ProcessMonitorDefaultClockHz defines default system clock frequency.
// Used in: process_monitor.go for CPU time calculations on ARM systems
// Used in: monitor_process.go for CPU time calculations on ARM systems
// Impact: Should match actual system clock for accurate CPU measurements.
// Default 250.0 Hz matches typical ARM embedded system configuration.
ProcessMonitorDefaultClockHz float64
// ProcessMonitorFallbackClockHz defines fallback clock frequency.
// Used in: process_monitor.go when system clock cannot be detected
// Used in: monitor_process.go when system clock cannot be detected
// Impact: Provides fallback for CPU time calculations.
// Default 1000.0 Hz provides reasonable fallback clock frequency.
ProcessMonitorFallbackClockHz float64
// ProcessMonitorTraditionalHz defines traditional system clock frequency.
// Used in: process_monitor.go for legacy system compatibility
// Used in: monitor_process.go for legacy system compatibility
// Impact: Supports older systems with traditional clock frequencies.
// Default 100.0 Hz provides compatibility with traditional Unix systems.
ProcessMonitorTraditionalHz float64
@ -1148,11 +1148,11 @@ type AudioConfigConstants struct {
OutputStreamingFrameIntervalMS int
// IPC Constants - Inter-Process Communication configuration
// Used in: ipc.go for IPC buffer management
// Used in: ipc_output.go for IPC buffer management
// Impact: Controls IPC buffer sizing and performance
// IPCInitialBufferFrames defines initial buffer size for IPC operations.
// Used in: ipc.go for initial IPC buffer allocation
// Used in: ipc_output.go for initial IPC buffer allocation
// Impact: Larger buffers reduce allocation overhead but increase memory usage.
// Default 500 frames provides good initial buffer size for IPC operations.
IPCInitialBufferFrames int
@ -1210,13 +1210,13 @@ type AudioConfigConstants struct {
// Impact: Controls socket file naming and IPC connection endpoints
// InputSocketName defines the socket file name for audio input IPC.
// Used in: input_ipc.go for microphone input communication
// Used in: ipc_input.go for microphone input communication
// Impact: Must be unique to prevent conflicts with other audio sockets.
// Default "audio_input.sock" provides clear identification for input socket.
InputSocketName string
// OutputSocketName defines the socket file name for audio output IPC.
// Used in: ipc.go for audio output communication
// Used in: ipc_output.go for audio output communication
// Impact: Must be unique to prevent conflicts with other audio sockets.
// Default "audio_output.sock" provides clear identification for output socket.
OutputSocketName string
@ -1226,19 +1226,19 @@ type AudioConfigConstants struct {
// Impact: Provides consistent component identification across logs
// AudioInputComponentName defines component name for audio input logging.
// Used in: input_ipc.go and related input processing components
// Used in: ipc_input.go and related input processing components
// Impact: Ensures consistent logging identification for input components.
// Default "audio-input" provides clear component identification.
AudioInputComponentName string
// AudioOutputComponentName defines component name for audio output logging.
// Used in: ipc.go and related output processing components
// Used in: ipc_output.go and related output processing components
// Impact: Ensures consistent logging identification for output components.
// Default "audio-output" provides clear component identification.
AudioOutputComponentName string
// AudioServerComponentName defines component name for audio server logging.
// Used in: supervisor.go and server management components
// Used in: output_supervisor.go and server management components
// Impact: Ensures consistent logging identification for server components.
// Default "audio-server" provides clear component identification.
AudioServerComponentName string
@ -1318,17 +1318,17 @@ type AudioConfigConstants struct {
HitRateCalculationBase float64
// Validation Constants - Configuration for input validation
// Used in: validation.go for parameter validation
// Used in: core_validation.go for parameter validation
// Impact: Controls validation thresholds and limits
// MaxLatency defines maximum allowed latency for audio processing.
// Used in: validation.go for latency validation
// Used in: core_validation.go for latency validation
// Impact: Controls maximum acceptable latency before optimization triggers.
// Default 200ms provides reasonable upper bound for real-time audio.
MaxLatency time.Duration
// MinMetricsUpdateInterval defines minimum allowed metrics update interval.
// Used in: validation.go for metrics interval validation
// Used in: core_validation.go for metrics interval validation
// Impact: Prevents excessive metrics updates that could impact performance.
// Default 100ms provides reasonable minimum update frequency.
MinMetricsUpdateInterval time.Duration
@ -1340,7 +1340,7 @@ type AudioConfigConstants struct {
MaxMetricsUpdateInterval time.Duration
// MinSampleRate defines minimum allowed audio sample rate.
// Used in: validation.go for sample rate validation
// Used in: core_validation.go for sample rate validation
// Impact: Ensures sample rate is sufficient for audio quality.
// Default 8000Hz provides minimum for voice communication.
MinSampleRate int
@ -1352,7 +1352,7 @@ type AudioConfigConstants struct {
MaxSampleRate int
// MaxChannels defines maximum allowed audio channels.
// Used in: validation.go for channel count validation
// Used in: core_validation.go for channel count validation
// Impact: Prevents excessive channel counts that could impact performance.
// Default 8 channels provides reasonable upper bound for multi-channel audio.
MaxChannels int
@ -1887,11 +1887,11 @@ func DefaultAudioConfig() *AudioConfigConstants {
MaxValidClockTicks: 1000, // Maximum valid clock ticks
// Performance Tuning - Thresholds for adaptive performance management
// Used in: adaptive_optimizer.go, quality_manager.go for performance scaling
// Used in: monitor_adaptive_optimizer.go, quality_manager.go for performance scaling
// Impact: Controls when system switches between performance modes
// CPUFactor defines weight of CPU usage in performance calculations (0.7).
// Used in: adaptive_optimizer.go for weighted performance scoring
// Used in: monitor_adaptive_optimizer.go for weighted performance scoring
// Impact: Higher values make CPU usage more influential in decisions
// Default 0.7 (70%) emphasizes CPU as primary performance bottleneck
CPUFactor: 0.7,

View File

@ -0,0 +1,333 @@
package audio
import (
"context"
"sync"
"sync/atomic"
"time"
"github.com/rs/zerolog"
)
// LatencyMonitor tracks and optimizes audio latency in real-time
type LatencyMonitor struct {
// Atomic fields MUST be first for ARM32 alignment (int64 fields need 8-byte alignment)
currentLatency int64 // Current latency in nanoseconds (atomic)
averageLatency int64 // Rolling average latency in nanoseconds (atomic)
minLatency int64 // Minimum observed latency in nanoseconds (atomic)
maxLatency int64 // Maximum observed latency in nanoseconds (atomic)
latencySamples int64 // Number of latency samples collected (atomic)
jitterAccumulator int64 // Accumulated jitter for variance calculation (atomic)
lastOptimization int64 // Timestamp of last optimization in nanoseconds (atomic)
config LatencyConfig
logger zerolog.Logger
// Control channels
ctx context.Context
cancel context.CancelFunc
wg sync.WaitGroup
// Optimization callbacks
optimizationCallbacks []OptimizationCallback
mutex sync.RWMutex
// Performance tracking
latencyHistory []LatencyMeasurement
historyMutex sync.RWMutex
}
// LatencyConfig holds configuration for latency monitoring
type LatencyConfig struct {
TargetLatency time.Duration // Target latency to maintain
MaxLatency time.Duration // Maximum acceptable latency
OptimizationInterval time.Duration // How often to run optimization
HistorySize int // Number of latency measurements to keep
JitterThreshold time.Duration // Jitter threshold for optimization
AdaptiveThreshold float64 // Threshold for adaptive adjustments (0.0-1.0)
}
// LatencyMeasurement represents a single latency measurement
type LatencyMeasurement struct {
Timestamp time.Time
Latency time.Duration
Jitter time.Duration
Source string // Source of the measurement (e.g., "input", "output", "processing")
}
// OptimizationCallback is called when latency optimization is triggered
type OptimizationCallback func(metrics LatencyMetrics) error
// LatencyMetrics provides comprehensive latency statistics
type LatencyMetrics struct {
Current time.Duration
Average time.Duration
Min time.Duration
Max time.Duration
Jitter time.Duration
SampleCount int64
Trend LatencyTrend
}
// LatencyTrend indicates the direction of latency changes
type LatencyTrend int
const (
LatencyTrendStable LatencyTrend = iota
LatencyTrendIncreasing
LatencyTrendDecreasing
LatencyTrendVolatile
)
// DefaultLatencyConfig returns a sensible default configuration
func DefaultLatencyConfig() LatencyConfig {
config := GetConfig()
return LatencyConfig{
TargetLatency: config.LatencyMonitorTarget,
MaxLatency: config.MaxLatencyThreshold,
OptimizationInterval: config.LatencyOptimizationInterval,
HistorySize: config.LatencyHistorySize,
JitterThreshold: config.JitterThreshold,
AdaptiveThreshold: config.LatencyAdaptiveThreshold,
}
}
// NewLatencyMonitor creates a new latency monitoring system
func NewLatencyMonitor(config LatencyConfig, logger zerolog.Logger) *LatencyMonitor {
// Validate latency configuration
if err := ValidateLatencyConfig(config); err != nil {
// Log validation error and use default configuration
logger.Error().Err(err).Msg("Invalid latency configuration provided, using defaults")
config = DefaultLatencyConfig()
}
ctx, cancel := context.WithCancel(context.Background())
return &LatencyMonitor{
config: config,
logger: logger.With().Str("component", "latency-monitor").Logger(),
ctx: ctx,
cancel: cancel,
latencyHistory: make([]LatencyMeasurement, 0, config.HistorySize),
minLatency: int64(time.Hour), // Initialize to high value
}
}
// Start begins latency monitoring and optimization
func (lm *LatencyMonitor) Start() {
lm.wg.Add(1)
go lm.monitoringLoop()
}
// Stop stops the latency monitor
func (lm *LatencyMonitor) Stop() {
lm.cancel()
lm.wg.Wait()
}
// RecordLatency records a new latency measurement
func (lm *LatencyMonitor) RecordLatency(latency time.Duration, source string) {
now := time.Now()
latencyNanos := latency.Nanoseconds()
// Update atomic counters
atomic.StoreInt64(&lm.currentLatency, latencyNanos)
atomic.AddInt64(&lm.latencySamples, 1)
// Update min/max
for {
oldMin := atomic.LoadInt64(&lm.minLatency)
if latencyNanos >= oldMin || atomic.CompareAndSwapInt64(&lm.minLatency, oldMin, latencyNanos) {
break
}
}
for {
oldMax := atomic.LoadInt64(&lm.maxLatency)
if latencyNanos <= oldMax || atomic.CompareAndSwapInt64(&lm.maxLatency, oldMax, latencyNanos) {
break
}
}
// Update rolling average using exponential moving average
oldAvg := atomic.LoadInt64(&lm.averageLatency)
newAvg := oldAvg + (latencyNanos-oldAvg)/10 // Alpha = 0.1
atomic.StoreInt64(&lm.averageLatency, newAvg)
// Calculate jitter (difference from average)
jitter := latencyNanos - newAvg
if jitter < 0 {
jitter = -jitter
}
atomic.AddInt64(&lm.jitterAccumulator, jitter)
// Store in history
lm.historyMutex.Lock()
measurement := LatencyMeasurement{
Timestamp: now,
Latency: latency,
Jitter: time.Duration(jitter),
Source: source,
}
if len(lm.latencyHistory) >= lm.config.HistorySize {
// Remove oldest measurement
copy(lm.latencyHistory, lm.latencyHistory[1:])
lm.latencyHistory[len(lm.latencyHistory)-1] = measurement
} else {
lm.latencyHistory = append(lm.latencyHistory, measurement)
}
lm.historyMutex.Unlock()
}
// GetMetrics returns current latency metrics
func (lm *LatencyMonitor) GetMetrics() LatencyMetrics {
current := atomic.LoadInt64(&lm.currentLatency)
average := atomic.LoadInt64(&lm.averageLatency)
min := atomic.LoadInt64(&lm.minLatency)
max := atomic.LoadInt64(&lm.maxLatency)
samples := atomic.LoadInt64(&lm.latencySamples)
jitterSum := atomic.LoadInt64(&lm.jitterAccumulator)
var jitter time.Duration
if samples > 0 {
jitter = time.Duration(jitterSum / samples)
}
return LatencyMetrics{
Current: time.Duration(current),
Average: time.Duration(average),
Min: time.Duration(min),
Max: time.Duration(max),
Jitter: jitter,
SampleCount: samples,
Trend: lm.calculateTrend(),
}
}
// AddOptimizationCallback adds a callback for latency optimization
func (lm *LatencyMonitor) AddOptimizationCallback(callback OptimizationCallback) {
lm.mutex.Lock()
lm.optimizationCallbacks = append(lm.optimizationCallbacks, callback)
lm.mutex.Unlock()
}
// monitoringLoop runs the main monitoring and optimization loop
func (lm *LatencyMonitor) monitoringLoop() {
defer lm.wg.Done()
ticker := time.NewTicker(lm.config.OptimizationInterval)
defer ticker.Stop()
for {
select {
case <-lm.ctx.Done():
return
case <-ticker.C:
lm.runOptimization()
}
}
}
// runOptimization checks if optimization is needed and triggers callbacks with threshold validation.
//
// Validation Rules:
// - Current latency must not exceed MaxLatency (default: 200ms)
// - Average latency checked against adaptive threshold: TargetLatency * (1 + AdaptiveThreshold)
// - Jitter must not exceed JitterThreshold (default: 20ms)
// - All latency values must be non-negative durations
//
// Optimization Triggers:
// - Current latency > MaxLatency: Immediate optimization needed
// - Average latency > adaptive threshold: Gradual optimization needed
// - Jitter > JitterThreshold: Stability optimization needed
//
// Threshold Calculations:
// - Adaptive threshold = TargetLatency * (1.0 + AdaptiveThreshold)
// - Default: 50ms * (1.0 + 0.8) = 90ms adaptive threshold
// - Provides buffer above target before triggering optimization
//
// The function ensures real-time audio performance by monitoring multiple
// latency metrics and triggering optimization callbacks when thresholds are exceeded.
func (lm *LatencyMonitor) runOptimization() {
metrics := lm.GetMetrics()
// Check if optimization is needed
needsOptimization := false
// Check if current latency exceeds threshold
if metrics.Current > lm.config.MaxLatency {
needsOptimization = true
lm.logger.Warn().Dur("current_latency", metrics.Current).Dur("max_latency", lm.config.MaxLatency).Msg("latency exceeds maximum threshold")
}
// Check if average latency is above adaptive threshold
adaptiveThreshold := time.Duration(float64(lm.config.TargetLatency.Nanoseconds()) * (1.0 + lm.config.AdaptiveThreshold))
if metrics.Average > adaptiveThreshold {
needsOptimization = true
}
// Check if jitter is too high
if metrics.Jitter > lm.config.JitterThreshold {
needsOptimization = true
}
if needsOptimization {
atomic.StoreInt64(&lm.lastOptimization, time.Now().UnixNano())
// Run optimization callbacks
lm.mutex.RLock()
callbacks := make([]OptimizationCallback, len(lm.optimizationCallbacks))
copy(callbacks, lm.optimizationCallbacks)
lm.mutex.RUnlock()
for _, callback := range callbacks {
if err := callback(metrics); err != nil {
lm.logger.Error().Err(err).Msg("optimization callback failed")
}
}
}
}
// calculateTrend analyzes recent latency measurements to determine trend
func (lm *LatencyMonitor) calculateTrend() LatencyTrend {
lm.historyMutex.RLock()
defer lm.historyMutex.RUnlock()
if len(lm.latencyHistory) < 10 {
return LatencyTrendStable
}
// Analyze last 10 measurements
recentMeasurements := lm.latencyHistory[len(lm.latencyHistory)-10:]
var increasing, decreasing int
for i := 1; i < len(recentMeasurements); i++ {
if recentMeasurements[i].Latency > recentMeasurements[i-1].Latency {
increasing++
} else if recentMeasurements[i].Latency < recentMeasurements[i-1].Latency {
decreasing++
}
}
// Determine trend based on direction changes
if increasing > 6 {
return LatencyTrendIncreasing
} else if decreasing > 6 {
return LatencyTrendDecreasing
} else if increasing+decreasing > 7 {
return LatencyTrendVolatile
}
return LatencyTrendStable
}
// GetLatencyHistory returns a copy of recent latency measurements
func (lm *LatencyMonitor) GetLatencyHistory() []LatencyMeasurement {
lm.historyMutex.RLock()
defer lm.historyMutex.RUnlock()
history := make([]LatencyMeasurement, len(lm.latencyHistory))
copy(history, lm.latencyHistory)
return history
}