mirror of https://github.com/google/pebble
405 lines
14 KiB
C
405 lines
14 KiB
C
/*
|
|
* Copyright 2024 Google LLC
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
|
|
#include "board/board.h"
|
|
#include "drivers/button.h"
|
|
#include "drivers/dbgserial.h"
|
|
#include "drivers/display.h"
|
|
#include "drivers/flash.h"
|
|
#include "drivers/gpio.h"
|
|
#include "drivers/periph_config.h"
|
|
#include "drivers/pmic.h"
|
|
#include "drivers/pwr.h"
|
|
#include "drivers/watchdog.h"
|
|
#include "boot_tests.h"
|
|
#include "firmware.h"
|
|
#include "fw_copy.h"
|
|
#include "pebble_errors.h"
|
|
#include "system/bootbits.h"
|
|
#include "system/logging.h"
|
|
#include "system/passert.h"
|
|
#include "system/reset.h"
|
|
#include "util/delay.h"
|
|
#include "util/misc.h"
|
|
|
|
#include "stm32f7xx.h"
|
|
|
|
static void prv_get_fw_reset_vector(void **reset_handler,
|
|
void **initial_stack_pointer) {
|
|
void** fw_vector_table = (void**) FIRMWARE_BASE;
|
|
|
|
*initial_stack_pointer = fw_vector_table[0];
|
|
*reset_handler = fw_vector_table[1];
|
|
}
|
|
|
|
static void prv_hw_reset(void) {
|
|
// Disable all interrupts, just in case.
|
|
for (int i = 0; i < 8; ++i) {
|
|
// Interrupt Clear-Enable Register
|
|
NVIC->ICER[i] = 0xFFFFFFFF;
|
|
// Interrupt Clear-Pending Register
|
|
NVIC->ICPR[i] = 0xFFFFFFFF;
|
|
}
|
|
|
|
// Set the peripheral clock enable registers to their reset values as
|
|
// specified in the reference manual.
|
|
RCC->AHB1ENR = 0x00100000;
|
|
RCC->AHB2ENR = 0;
|
|
RCC->AHB3ENR = 0;
|
|
RCC->APB1ENR = 0x00000400; // Reserved bit needs to be set to enable RTC!
|
|
RCC->APB2ENR = 0;
|
|
|
|
// Reset most peripherals used by the bootloader. We want to minimize the
|
|
// chances that the firmware unintentionally relies on some state that the
|
|
// bootloader leaves behind. This includes disabling the PLL.
|
|
// GPIOs are not reset here: resetting them would change their output values,
|
|
// which could unintentionally turn of e.g. PMIC power rails.
|
|
// The backup domain is not reset; that would be foolish.
|
|
const uint32_t ahb1_periphs =
|
|
RCC_AHB1Periph_CRC | RCC_AHB1Periph_DMA1 | RCC_AHB1Periph_DMA2
|
|
| RCC_AHB1Periph_DMA2D | RCC_AHB1Periph_ETHMAC | RCC_AHB1Periph_OTGHS;
|
|
const uint32_t ahb2_periphs =
|
|
RCC_AHB2Periph_DCMI | RCC_AHB2Periph_JPEG | RCC_AHB2Periph_CRYP | RCC_AHB2Periph_HASH
|
|
| RCC_AHB2Periph_RNG | RCC_AHB2Periph_OTGFS;
|
|
const uint32_t ahb3_periphs = RCC_AHB3Periph_FMC | RCC_AHB3Periph_QSPI;
|
|
const uint32_t apb1_periphs =
|
|
RCC_APB1Periph_TIM2 | RCC_APB1Periph_TIM3 | RCC_APB1Periph_TIM4| RCC_APB1Periph_TIM5
|
|
| RCC_APB1Periph_TIM6 | RCC_APB1Periph_TIM7 | RCC_APB1Periph_TIM12 | RCC_APB1Periph_TIM13
|
|
| RCC_APB1Periph_TIM14 | RCC_APB1Periph_LPTIM1 | RCC_APB1Periph_WWDG | RCC_APB1Periph_CAN3
|
|
| RCC_APB1Periph_SPI2 | RCC_APB1Periph_SPI3 | RCC_APB1Periph_SPDIFRX | RCC_APB1Periph_USART2
|
|
| RCC_APB1Periph_USART3 | RCC_APB1Periph_UART4 | RCC_APB1Periph_UART5 | RCC_APB1Periph_I2C1
|
|
| RCC_APB1Periph_I2C2 | RCC_APB1Periph_I2C3 | RCC_APB1Periph_I2C4 | RCC_APB1Periph_CAN1
|
|
| RCC_APB1Periph_CAN2 | RCC_APB1Periph_CEC | RCC_APB1Periph_PWR | RCC_APB1Periph_DAC
|
|
| RCC_APB1Periph_UART7 | RCC_APB1Periph_UART8;
|
|
const uint32_t apb2_periphs =
|
|
RCC_APB2Periph_TIM1 | RCC_APB2Periph_TIM8 | RCC_APB2Periph_USART1
|
|
| RCC_APB2Periph_USART6 | RCC_APB2Periph_SDMMC2 | RCC_APB2Periph_ADC | RCC_APB2Periph_SDMMC1
|
|
| RCC_APB2Periph_SPI1 | RCC_APB2Periph_SPI4 | RCC_APB2Periph_SYSCFG
|
|
| RCC_APB2Periph_TIM9 | RCC_APB2Periph_TIM10 | RCC_APB2Periph_TIM11
|
|
| RCC_APB2Periph_SPI5 | RCC_APB2Periph_SPI6 | RCC_APB2Periph_SAI1 | RCC_APB2Periph_SAI2
|
|
| RCC_APB2Periph_DFSDM | RCC_APB2Periph_MDIO | RCC_APB2Periph_LTDC;
|
|
RCC_DeInit();
|
|
RCC_AHB1PeriphResetCmd(ahb1_periphs, ENABLE);
|
|
RCC_AHB1PeriphResetCmd(ahb1_periphs, DISABLE);
|
|
RCC_AHB2PeriphResetCmd(ahb2_periphs, ENABLE);
|
|
RCC_AHB2PeriphResetCmd(ahb2_periphs, DISABLE);
|
|
RCC_AHB3PeriphResetCmd(ahb3_periphs, ENABLE);
|
|
RCC_AHB3PeriphResetCmd(ahb3_periphs, DISABLE);
|
|
RCC_APB1PeriphResetCmd(apb1_periphs, ENABLE);
|
|
RCC_APB1PeriphResetCmd(apb1_periphs, DISABLE);
|
|
RCC_APB2PeriphResetCmd(apb2_periphs, ENABLE);
|
|
RCC_APB2PeriphResetCmd(apb2_periphs, DISABLE);
|
|
}
|
|
|
|
static void __attribute__((noreturn)) prv_jump_to_fw(void) {
|
|
void *initial_stack_pointer, *reset_handler;
|
|
prv_get_fw_reset_vector(&reset_handler, &initial_stack_pointer);
|
|
|
|
dbgserial_print("Booting firmware @ ");
|
|
dbgserial_print_hex((uintptr_t)reset_handler);
|
|
dbgserial_print("...\r\n\r\n");
|
|
|
|
prv_hw_reset();
|
|
|
|
// The Cortex-M user guide states that the reset values for the core registers
|
|
// are as follows:
|
|
// R0-R12 = Unknown
|
|
// MSP = VECTOR_TABLE[0] (main stack pointer)
|
|
// PSP = Unknown (process stack pointer)
|
|
// LR = 0xFFFFFFFF
|
|
// PC = VECTOR_TABLE[1]
|
|
// PRIMASK = 0x0
|
|
// FAULTMASK = 0x0
|
|
// BASEPRI = 0x0
|
|
// CONTROL = 0x0
|
|
//
|
|
// Attempt to put the processor into as close to the reset state as possible
|
|
// before passing control to the firmware.
|
|
//
|
|
// No attempt is made to set CONTROL to zero as it should already be set to
|
|
// the reset value when this code executes.
|
|
__asm volatile (
|
|
"cpsie if\n" // Clear PRIMASK and FAULTMASK
|
|
"mov lr, 0xFFFFFFFF\n"
|
|
"mov sp, %[initial_sp]\n"
|
|
"bx %[reset_handler]\n"
|
|
: : [initial_sp] "r" (initial_stack_pointer),
|
|
[reset_handler] "r" (reset_handler)
|
|
);
|
|
__builtin_unreachable();
|
|
}
|
|
|
|
static bool prv_check_and_increment_reset_loop_detection_bits(void) {
|
|
uint8_t counter =
|
|
(boot_bit_test(BOOT_BIT_RESET_LOOP_DETECT_THREE) << 2) |
|
|
(boot_bit_test(BOOT_BIT_RESET_LOOP_DETECT_TWO) << 1) |
|
|
boot_bit_test(BOOT_BIT_RESET_LOOP_DETECT_ONE);
|
|
|
|
if (counter == 7) {
|
|
boot_bit_clear(BOOT_BIT_RESET_LOOP_DETECT_ONE);
|
|
boot_bit_clear(BOOT_BIT_RESET_LOOP_DETECT_TWO);
|
|
boot_bit_clear(BOOT_BIT_RESET_LOOP_DETECT_THREE);
|
|
return true;
|
|
}
|
|
|
|
switch (++counter) {
|
|
case 1:
|
|
boot_bit_set(BOOT_BIT_RESET_LOOP_DETECT_ONE);
|
|
break;
|
|
case 2:
|
|
boot_bit_clear(BOOT_BIT_RESET_LOOP_DETECT_ONE);
|
|
boot_bit_set(BOOT_BIT_RESET_LOOP_DETECT_TWO);
|
|
break;
|
|
case 3:
|
|
boot_bit_set(BOOT_BIT_RESET_LOOP_DETECT_ONE);
|
|
break;
|
|
case 4:
|
|
boot_bit_clear(BOOT_BIT_RESET_LOOP_DETECT_ONE);
|
|
boot_bit_clear(BOOT_BIT_RESET_LOOP_DETECT_TWO);
|
|
boot_bit_set(BOOT_BIT_RESET_LOOP_DETECT_THREE);
|
|
break;
|
|
case 5:
|
|
boot_bit_set(BOOT_BIT_RESET_LOOP_DETECT_ONE);
|
|
break;
|
|
case 6:
|
|
boot_bit_clear(BOOT_BIT_RESET_LOOP_DETECT_ONE);
|
|
boot_bit_set(BOOT_BIT_RESET_LOOP_DETECT_TWO);
|
|
break;
|
|
case 7:
|
|
boot_bit_set(BOOT_BIT_RESET_LOOP_DETECT_ONE);
|
|
break;
|
|
default:
|
|
PBL_CROAK("reset loop boot bits overrun");
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool prv_check_for_recovery_start_failure() {
|
|
return boot_bit_test(BOOT_BIT_RECOVERY_START_IN_PROGRESS);
|
|
}
|
|
|
|
static bool prv_check_for_fw_start_failure() {
|
|
// Add more failure conditions here.
|
|
if (!watchdog_check_reset_flag() && !boot_bit_test(BOOT_BIT_SOFTWARE_FAILURE_OCCURRED)) {
|
|
// We're good, we're just starting normally.
|
|
PBL_LOG_VERBOSE("We're good, we're just starting normally.");
|
|
|
|
boot_bit_clear(BOOT_BIT_FW_START_FAIL_STRIKE_ONE);
|
|
boot_bit_clear(BOOT_BIT_FW_START_FAIL_STRIKE_TWO);
|
|
return false;
|
|
}
|
|
|
|
// We failed to start our firmware successfully!
|
|
if (watchdog_check_reset_flag()) {
|
|
dbgserial_putstr("Watchdog caused a reset");
|
|
}
|
|
if (boot_bit_test(BOOT_BIT_SOFTWARE_FAILURE_OCCURRED)) {
|
|
dbgserial_putstr("Software failure caused a reset");
|
|
}
|
|
|
|
// Clean up after the last failure.
|
|
boot_bit_clear(BOOT_BIT_SOFTWARE_FAILURE_OCCURRED);
|
|
|
|
// We have a "three strikes" algorithm: if the watch fails three times, return true
|
|
// to tell the parent we should load the recovery firmware. A reset for any other reason
|
|
// will reset this algorithm.
|
|
if (boot_bit_test(BOOT_BIT_FW_START_FAIL_STRIKE_TWO)) {
|
|
// Yikes, our firmware is screwed. Boot into recovery mode.
|
|
dbgserial_putstr("Failed to start firmware, strike three.");
|
|
boot_bit_clear(BOOT_BIT_FW_START_FAIL_STRIKE_ONE);
|
|
boot_bit_clear(BOOT_BIT_FW_START_FAIL_STRIKE_TWO);
|
|
return true;
|
|
} else if (boot_bit_test(BOOT_BIT_FW_START_FAIL_STRIKE_ONE)) {
|
|
dbgserial_putstr("Failed to start firmware, strike two.");
|
|
boot_bit_set(BOOT_BIT_FW_START_FAIL_STRIKE_TWO);
|
|
} else {
|
|
dbgserial_putstr("Failed to start firmware, strike one.");
|
|
boot_bit_set(BOOT_BIT_FW_START_FAIL_STRIKE_ONE);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool prv_prf_button_combination_is_pressed(void) {
|
|
return (button_is_pressed(BUTTON_ID_UP) && button_is_pressed(BUTTON_ID_BACK)
|
|
&& button_is_pressed(BUTTON_ID_SELECT) && !button_is_pressed(BUTTON_ID_DOWN));
|
|
}
|
|
|
|
static bool prv_check_force_boot_recovery(void) {
|
|
if (boot_bit_test(BOOT_BIT_FORCE_PRF)) {
|
|
boot_bit_clear(BOOT_BIT_FORCE_PRF);
|
|
return true;
|
|
}
|
|
|
|
if (prv_prf_button_combination_is_pressed()) {
|
|
dbgserial_putstr("Hold down UP + BACK + SELECT for 5 secs. to force-boot PRF");
|
|
for (int i = 0; i < 5000; ++i) {
|
|
if (!prv_prf_button_combination_is_pressed()) {
|
|
// stop waiting if not held down any longer
|
|
return false;
|
|
}
|
|
delay_ms(1);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void *reset_vector, *initial_sp;
|
|
prv_get_fw_reset_vector(&reset_vector, &initial_sp);
|
|
if ((uintptr_t)reset_vector == 0xffffffff ||
|
|
(uintptr_t)initial_sp == 0xffffffff) {
|
|
dbgserial_putstr("Firmware is erased");
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void prv_sad_watch(uint32_t error_code) {
|
|
dbgserial_putstr("SAD WATCH");
|
|
|
|
char error_code_buffer[12];
|
|
itoa_hex(error_code, error_code_buffer, sizeof(error_code_buffer));
|
|
dbgserial_putstr(error_code_buffer);
|
|
|
|
display_error_code(error_code);
|
|
|
|
bool prev_select_state = button_is_pressed(BUTTON_ID_SELECT);
|
|
while (1) {
|
|
// See if we should restart
|
|
bool select_state = button_is_pressed(BUTTON_ID_SELECT);
|
|
if (select_state != prev_select_state) {
|
|
system_reset();
|
|
}
|
|
delay_ms(10);
|
|
}
|
|
}
|
|
|
|
static void prv_check_and_handle_resuming_from_standby(void) {
|
|
periph_config_enable(PWR, RCC_APB1Periph_PWR);
|
|
if (pwr_did_boot_from_standby()) {
|
|
// We just woke up from standby. For some reason this leaves the system in a funny state,
|
|
// so clear the flag and reboot again to really clear things up.
|
|
|
|
pwr_clear_boot_from_standby_flag();
|
|
dbgserial_putstr("exit standby");
|
|
system_hard_reset();
|
|
}
|
|
periph_config_disable(PWR, RCC_APB1Periph_PWR);
|
|
}
|
|
|
|
static void prv_print_bootloader_version(void) {
|
|
char bootloader_version_str[12];
|
|
memset(bootloader_version_str, 0, 12);
|
|
itoa_hex(boot_version_read(), bootloader_version_str, 12);
|
|
dbgserial_putstr(bootloader_version_str);
|
|
dbgserial_putstr("");
|
|
dbgserial_putstr("");
|
|
}
|
|
|
|
int main(void) {
|
|
prv_check_and_handle_resuming_from_standby();
|
|
|
|
board_init();
|
|
|
|
dbgserial_init();
|
|
|
|
dbgserial_putstr("\r\n\r\n\r\n");
|
|
dbgserial_putstr("██████╗ ██████╗ ██████╗ ███████╗██████╗ ████████╗");
|
|
dbgserial_putstr("██╔══██╗██╔═══██╗██╔══██╗██╔════╝██╔══██╗╚══██╔══╝");
|
|
dbgserial_putstr("██████╔╝██║ ██║██████╔╝█████╗ ██████╔╝ ██║ ");
|
|
dbgserial_putstr("██╔══██╗██║ ██║██╔══██╗██╔══╝ ██╔══██╗ ██║ ");
|
|
dbgserial_putstr("██║ ██║╚██████╔╝██████╔╝███████╗██║ ██║ ██║ ");
|
|
dbgserial_putstr("╚═╝ ╚═╝ ╚═════╝ ╚═════╝ ╚══════╝╚═╝ ╚═╝ ╚═╝ ");
|
|
|
|
// Enable the 3.2V rail for the benefit of the FPGA and display
|
|
pmic_init();
|
|
|
|
boot_bit_init();
|
|
|
|
boot_version_write();
|
|
|
|
prv_print_bootloader_version();
|
|
|
|
if (boot_bit_test(BOOT_BIT_FW_STABLE)) {
|
|
dbgserial_putstr("Last firmware boot was stable; clear strikes");
|
|
|
|
boot_bit_clear(BOOT_BIT_FW_STABLE);
|
|
|
|
boot_bit_clear(BOOT_BIT_FW_START_FAIL_STRIKE_ONE);
|
|
boot_bit_clear(BOOT_BIT_FW_START_FAIL_STRIKE_TWO);
|
|
boot_bit_clear(BOOT_BIT_RECOVERY_LOAD_FAIL_STRIKE_ONE);
|
|
boot_bit_clear(BOOT_BIT_RECOVERY_LOAD_FAIL_STRIKE_TWO);
|
|
}
|
|
|
|
flash_init();
|
|
button_init();
|
|
pmic_init();
|
|
display_init();
|
|
|
|
display_boot_splash();
|
|
|
|
if (boot_test_is_button_stuck()) {
|
|
prv_sad_watch(ERROR_STUCK_BUTTON);
|
|
}
|
|
|
|
if (boot_test_is_flash_broken()) {
|
|
prv_sad_watch(ERROR_BAD_SPI_FLASH);
|
|
}
|
|
|
|
boot_bit_dump();
|
|
|
|
// If the recovery firmware crashed at start-up, the watch is now a $199 brick. That's life!
|
|
if (prv_check_for_recovery_start_failure()) {
|
|
boot_bit_clear(BOOT_BIT_RECOVERY_START_IN_PROGRESS);
|
|
prv_sad_watch(ERROR_CANT_LOAD_FW);
|
|
}
|
|
|
|
bool force_boot_recovery_mode = prv_check_force_boot_recovery();
|
|
if (force_boot_recovery_mode) {
|
|
dbgserial_putstr("Force-booting recovery mode...");
|
|
}
|
|
|
|
if (force_boot_recovery_mode || prv_check_for_fw_start_failure()) {
|
|
if (!fw_copy_switch_to_recovery_fw()) {
|
|
// We've failed to load recovery mode too many times.
|
|
prv_sad_watch(ERROR_CANT_LOAD_FW);
|
|
}
|
|
} else {
|
|
fw_copy_check_update_fw();
|
|
}
|
|
|
|
if (prv_check_and_increment_reset_loop_detection_bits()) {
|
|
prv_sad_watch(ERROR_RESET_LOOP);
|
|
}
|
|
|
|
#if !NO_WATCHDOG
|
|
dbgserial_putstr("Enabling watchdog");
|
|
watchdog_init();
|
|
watchdog_start();
|
|
#endif
|
|
|
|
gpio_disable_all();
|
|
|
|
prv_jump_to_fw();
|
|
}
|
|
|
|
// Stubs for libg_s.a, which is our libc implementation from nano-newlib
|
|
void _exit(int status) {
|
|
}
|