Add two new configurable session settings to improve multi-session management: 1. Maximum Concurrent Sessions (1-20, default: 10) - Controls the maximum number of simultaneous connections - Configurable via settings UI with validation - Applied in session manager during session creation 2. Observer Cleanup Timeout (30-600 seconds, default: 120) - Automatically removes inactive observer sessions with closed RPC channels - Prevents accumulation of zombie observer sessions - Runs during periodic cleanup checks - Configurable timeout displayed in minutes in UI Backend changes: - Add MaxSessions and ObserverTimeout fields to SessionSettings struct - Update setSessionSettings RPC handler to persist new settings - Implement observer cleanup logic in cleanupInactiveSessions - Apply maxSessions limit in NewSessionManager with proper fallback chain Frontend changes: - Add numeric input controls for both settings in multi-session settings page - Include validation and user-friendly error messages - Display friendly units (sessions, seconds/minutes) - Maintain consistent styling with existing settings Also includes defensive nil checks in writeJSONRPCEvent to prevent "No HDMI Signal" errors when RPC channels close during reconnection. |
||
|---|---|---|
| .devcontainer | ||
| .github | ||
| .vscode | ||
| bin | ||
| cmd | ||
| internal | ||
| resource | ||
| scripts | ||
| ui | ||
| .gitignore | ||
| .golangci.yml | ||
| CODE_OF_CONDUCT.md | ||
| DEVELOPMENT.md | ||
| Dockerfile.build | ||
| LICENSE | ||
| Makefile | ||
| README.md | ||
| block_device.go | ||
| block_device_linux.go | ||
| block_device_notlinux.go | ||
| cloud.go | ||
| config.go | ||
| datachannel_helpers.go | ||
| dc_metrics.go | ||
| dev_deploy.sh | ||
| display.go | ||
| errors.go | ||
| go.mod | ||
| go.sum | ||
| hidrpc.go | ||
| hw.go | ||
| jiggler.go | ||
| jsonrpc.go | ||
| log.go | ||
| main.go | ||
| mdns.go | ||
| native.go | ||
| network.go | ||
| ota.go | ||
| prometheus.go | ||
| publish_source.sh | ||
| serial.go | ||
| session_manager.go | ||
| session_permissions.go | ||
| terminal.go | ||
| timesync.go | ||
| usb.go | ||
| usb_mass_storage.go | ||
| version.go | ||
| video.go | ||
| web.go | ||
| web_tls.go | ||
| webrtc.go | ||
| wol.go | ||
README.md
JetKVM is a high-performance, open-source KVM over IP (Keyboard, Video, Mouse) solution designed for efficient remote management of computers, servers, and workstations. Whether you're dealing with boot failures, installing a new operating system, adjusting BIOS settings, or simply taking control of a machine from afar, JetKVM provides the tools to get it done effectively.
Features
- Ultra-low Latency - 1080p@60FPS video with 30-60ms latency using H.264 encoding. Smooth mouse and keyboard interaction for responsive remote control.
- Free & Optional Remote Access - Remote management via JetKVM Cloud using WebRTC.
- Open-source software - Written in Golang on Linux. Easily customizable through SSH access to the JetKVM device.
Contributing
We welcome contributions from the community! Whether it's improving the firmware, adding new features, or enhancing documentation, your input is valuable. We also have some rules and taboos here, so please read this page and our Code of Conduct carefully.
I need help
The best place to search for answers is our Documentation. If you can't find the answer there, check our Discord Server.
I want to report an issue
If you've found an issue and want to report it, please check our Issues page. Make sure the description contains information about the firmware version you're using, your platform, and a clear explanation of the steps to reproduce the issue.
Development
JetKVM is written in Go & TypeScript. with some bits and pieces written in C. An intermediate level of Go & TypeScript knowledge is recommended for comfortable programming.
The project contains two main parts, the backend software that runs on the KVM device and the frontend software that is served by the KVM device, and also the cloud.
For comprehensive development information, including setup, testing, debugging, and contribution guidelines, see DEVELOPMENT.md.
For quick device development, use the ./dev_deploy.sh script. It will build the frontend and backend and deploy them to the local KVM device. Run ./dev_deploy.sh --help for more information.
Backend
The backend is written in Go and is responsible for the KVM device management, the cloud API and the cloud web.
Frontend
The frontend is written in React and TypeScript and is served by the KVM device. It has three build targets: device, development and production. Development is used for development of the cloud version on your local machine, device is used for building the frontend for the KVM device and production is used for building the frontend for the cloud.