kvm/internal/audio/performance_critical_test.go

394 lines
12 KiB
Go

//go:build cgo
// +build cgo
package audio
import (
"runtime"
"sync"
"sync/atomic"
"testing"
"time"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
)
// TestPerformanceCriticalPaths tests the most frequently executed code paths
// to ensure they remain efficient and don't interfere with KVM functionality
func TestPerformanceCriticalPaths(t *testing.T) {
if testing.Short() {
t.Skip("Skipping performance tests in short mode")
}
// Initialize validation cache for performance testing
InitValidationCache()
tests := []struct {
name string
testFunc func(t *testing.T)
}{
{"AudioFrameProcessingLatency", testAudioFrameProcessingLatency},
{"MetricsUpdateOverhead", testMetricsUpdateOverhead},
{"ConfigurationAccessSpeed", testConfigurationAccessSpeed},
{"ValidationFunctionSpeed", testValidationFunctionSpeed},
{"MemoryAllocationPatterns", testMemoryAllocationPatterns},
{"ConcurrentAccessPerformance", testConcurrentAccessPerformance},
{"BufferPoolEfficiency", testBufferPoolEfficiency},
{"AtomicOperationOverhead", testAtomicOperationOverhead},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
tt.testFunc(t)
})
}
}
// testAudioFrameProcessingLatency tests the latency of audio frame processing
// This is the most critical path that must not interfere with KVM
func testAudioFrameProcessingLatency(t *testing.T) {
const (
frameCount = 1000
maxLatencyPerFrame = 100 * time.Microsecond // Very strict requirement
)
// Create test frame data
frameData := make([]byte, 1920) // Typical frame size
for i := range frameData {
frameData[i] = byte(i % 256)
}
// Measure frame processing latency
start := time.Now()
for i := 0; i < frameCount; i++ {
// Simulate the critical path: validation + metrics update
err := ValidateAudioFrame(frameData)
require.NoError(t, err)
// Record frame received (atomic operation)
RecordFrameReceived(len(frameData))
}
elapsed := time.Since(start)
avgLatencyPerFrame := elapsed / frameCount
t.Logf("Average frame processing latency: %v", avgLatencyPerFrame)
// Ensure frame processing is fast enough to not interfere with KVM
assert.Less(t, avgLatencyPerFrame, maxLatencyPerFrame,
"Frame processing latency %v exceeds maximum %v - may interfere with KVM",
avgLatencyPerFrame, maxLatencyPerFrame)
// Ensure total processing time is reasonable
maxTotalTime := 50 * time.Millisecond
assert.Less(t, elapsed, maxTotalTime,
"Total processing time %v exceeds maximum %v", elapsed, maxTotalTime)
}
// testMetricsUpdateOverhead tests the overhead of metrics updates
func testMetricsUpdateOverhead(t *testing.T) {
const iterations = 10000
// Test RecordFrameReceived performance
start := time.Now()
for i := 0; i < iterations; i++ {
RecordFrameReceived(1024)
}
recordLatency := time.Since(start) / iterations
// Test GetAudioMetrics performance
start = time.Now()
for i := 0; i < iterations; i++ {
_ = GetAudioMetrics()
}
getLatency := time.Since(start) / iterations
t.Logf("RecordFrameReceived latency: %v", recordLatency)
t.Logf("GetAudioMetrics latency: %v", getLatency)
// Metrics operations should be optimized for JetKVM's ARM Cortex-A7 @ 1GHz
// With 256MB RAM, we need to be conservative with performance expectations
assert.Less(t, recordLatency, 50*time.Microsecond, "RecordFrameReceived too slow")
assert.Less(t, getLatency, 20*time.Microsecond, "GetAudioMetrics too slow")
}
// testConfigurationAccessSpeed tests configuration access performance
func testConfigurationAccessSpeed(t *testing.T) {
const iterations = 10000
// Test GetAudioConfig performance
start := time.Now()
for i := 0; i < iterations; i++ {
_ = GetAudioConfig()
}
configLatency := time.Since(start) / iterations
// Test GetConfig performance
start = time.Now()
for i := 0; i < iterations; i++ {
_ = GetConfig()
}
constantsLatency := time.Since(start) / iterations
t.Logf("GetAudioConfig latency: %v", configLatency)
t.Logf("GetConfig latency: %v", constantsLatency)
// Configuration access should be very fast
assert.Less(t, configLatency, 100*time.Nanosecond, "GetAudioConfig too slow")
assert.Less(t, constantsLatency, 100*time.Nanosecond, "GetConfig too slow")
}
// testValidationFunctionSpeed tests validation function performance
func testValidationFunctionSpeed(t *testing.T) {
const iterations = 10000
frameData := make([]byte, 1920)
// Test ValidateAudioFrame (most critical)
start := time.Now()
for i := 0; i < iterations; i++ {
err := ValidateAudioFrame(frameData)
require.NoError(t, err)
}
fastValidationLatency := time.Since(start) / iterations
// Test ValidateAudioQuality
start = time.Now()
for i := 0; i < iterations; i++ {
err := ValidateAudioQuality(AudioQualityMedium)
require.NoError(t, err)
}
qualityValidationLatency := time.Since(start) / iterations
// Test ValidateBufferSize
start = time.Now()
for i := 0; i < iterations; i++ {
err := ValidateBufferSize(1024)
require.NoError(t, err)
}
bufferValidationLatency := time.Since(start) / iterations
t.Logf("ValidateAudioFrame latency: %v", fastValidationLatency)
t.Logf("ValidateAudioQuality latency: %v", qualityValidationLatency)
t.Logf("ValidateBufferSize latency: %v", bufferValidationLatency)
// Validation functions optimized for ARM Cortex-A7 single core @ 1GHz
// Conservative thresholds to ensure KVM functionality isn't impacted
assert.Less(t, fastValidationLatency, 100*time.Microsecond, "ValidateAudioFrame too slow")
assert.Less(t, qualityValidationLatency, 50*time.Microsecond, "ValidateAudioQuality too slow")
assert.Less(t, bufferValidationLatency, 50*time.Microsecond, "ValidateBufferSize too slow")
}
// testMemoryAllocationPatterns tests memory allocation efficiency
func testMemoryAllocationPatterns(t *testing.T) {
// Test that frequent operations don't cause excessive allocations
var m1, m2 runtime.MemStats
runtime.GC()
runtime.ReadMemStats(&m1)
// Perform operations that should minimize allocations
for i := 0; i < 1000; i++ {
_ = GetAudioConfig()
_ = GetAudioMetrics()
RecordFrameReceived(1024)
_ = ValidateAudioQuality(AudioQualityMedium)
}
runtime.GC()
runtime.ReadMemStats(&m2)
allocations := m2.Mallocs - m1.Mallocs
t.Logf("Memory allocations for 1000 operations: %d", allocations)
// Should have minimal allocations for these hot path operations
assert.Less(t, allocations, uint64(100), "Too many memory allocations in hot path")
}
// testConcurrentAccessPerformance tests performance under concurrent access
func testConcurrentAccessPerformance(t *testing.T) {
const (
numGoroutines = 10
operationsPerGoroutine = 1000
)
var wg sync.WaitGroup
start := time.Now()
// Launch concurrent goroutines performing audio operations
for i := 0; i < numGoroutines; i++ {
wg.Add(1)
go func() {
defer wg.Done()
frameData := make([]byte, 1920)
for j := 0; j < operationsPerGoroutine; j++ {
// Simulate concurrent audio processing
_ = ValidateAudioFrame(frameData)
RecordFrameReceived(len(frameData))
_ = GetAudioMetrics()
_ = GetAudioConfig()
}
}()
}
wg.Wait()
elapsed := time.Since(start)
totalOperations := numGoroutines * operationsPerGoroutine * 4 // 4 operations per iteration
avgLatency := elapsed / time.Duration(totalOperations)
t.Logf("Concurrent access: %d operations in %v (avg: %v per operation)",
totalOperations, elapsed, avgLatency)
// Concurrent access should not significantly degrade performance
assert.Less(t, avgLatency, 1*time.Microsecond, "Concurrent access too slow")
}
// testBufferPoolEfficiency tests buffer pool performance
func testBufferPoolEfficiency(t *testing.T) {
// Test buffer acquisition and release performance
const iterations = 1000
start := time.Now()
for i := 0; i < iterations; i++ {
// Simulate buffer pool usage (if available)
buffer := make([]byte, 1920) // Fallback to allocation
_ = buffer
// In real implementation, this would be pool.Get() and pool.Put()
}
elapsed := time.Since(start)
avgLatency := elapsed / iterations
t.Logf("Buffer allocation latency: %v per buffer", avgLatency)
// Buffer operations should be fast
assert.Less(t, avgLatency, 1*time.Microsecond, "Buffer allocation too slow")
}
// testAtomicOperationOverhead tests atomic operation performance
func testAtomicOperationOverhead(t *testing.T) {
const iterations = 10000
var counter int64
// Test atomic increment performance
start := time.Now()
for i := 0; i < iterations; i++ {
atomic.AddInt64(&counter, 1)
}
atomicLatency := time.Since(start) / iterations
// Test atomic load performance
start = time.Now()
for i := 0; i < iterations; i++ {
_ = atomic.LoadInt64(&counter)
}
loadLatency := time.Since(start) / iterations
t.Logf("Atomic add latency: %v", atomicLatency)
t.Logf("Atomic load latency: %v", loadLatency)
// Atomic operations on ARM Cortex-A7 - realistic expectations
assert.Less(t, atomicLatency, 1*time.Microsecond, "Atomic add too slow")
assert.Less(t, loadLatency, 500*time.Nanosecond, "Atomic load too slow")
}
// TestRegressionDetection tests for performance regressions
func TestRegressionDetection(t *testing.T) {
if testing.Short() {
t.Skip("Skipping regression test in short mode")
}
// Baseline performance expectations
baselines := map[string]time.Duration{
"frame_processing": 100 * time.Microsecond,
"metrics_update": 500 * time.Nanosecond,
"config_access": 100 * time.Nanosecond,
"validation": 200 * time.Nanosecond,
}
// Test frame processing
frameData := make([]byte, 1920)
start := time.Now()
for i := 0; i < 100; i++ {
_ = ValidateAudioFrame(frameData)
RecordFrameReceived(len(frameData))
}
frameProcessingTime := time.Since(start) / 100
// Test metrics update
start = time.Now()
for i := 0; i < 1000; i++ {
RecordFrameReceived(1024)
}
metricsUpdateTime := time.Since(start) / 1000
// Test config access
start = time.Now()
for i := 0; i < 1000; i++ {
_ = GetAudioConfig()
}
configAccessTime := time.Since(start) / 1000
// Test validation
start = time.Now()
for i := 0; i < 1000; i++ {
_ = ValidateAudioQuality(AudioQualityMedium)
}
validationTime := time.Since(start) / 1000
// Performance regression thresholds for JetKVM hardware:
// - ARM Cortex-A7 @ 1GHz single core
// - 256MB DDR3L RAM
// - Must not interfere with primary KVM functionality
assert.Less(t, frameProcessingTime, baselines["frame_processing"],
"Frame processing regression: %v > %v", frameProcessingTime, baselines["frame_processing"])
assert.Less(t, metricsUpdateTime, 100*time.Microsecond,
"Metrics update regression: %v > 100μs", metricsUpdateTime)
assert.Less(t, configAccessTime, 10*time.Microsecond,
"Config access regression: %v > 10μs", configAccessTime)
assert.Less(t, validationTime, 10*time.Microsecond,
"Validation regression: %v > 10μs", validationTime)
t.Logf("Performance results:")
t.Logf(" Frame processing: %v (baseline: %v)", frameProcessingTime, baselines["frame_processing"])
t.Logf(" Metrics update: %v (baseline: %v)", metricsUpdateTime, baselines["metrics_update"])
t.Logf(" Config access: %v (baseline: %v)", configAccessTime, baselines["config_access"])
t.Logf(" Validation: %v (baseline: %v)", validationTime, baselines["validation"])
}
// TestMemoryLeakDetection tests for memory leaks in critical paths
func TestMemoryLeakDetection(t *testing.T) {
if testing.Short() {
t.Skip("Skipping memory leak test in short mode")
}
var m1, m2 runtime.MemStats
// Baseline measurement
runtime.GC()
runtime.ReadMemStats(&m1)
// Perform many operations that should not leak memory
for cycle := 0; cycle < 10; cycle++ {
for i := 0; i < 1000; i++ {
frameData := make([]byte, 1920)
_ = ValidateAudioFrame(frameData)
RecordFrameReceived(len(frameData))
_ = GetAudioMetrics()
_ = GetAudioConfig()
}
// Force garbage collection between cycles
runtime.GC()
}
// Final measurement
runtime.GC()
runtime.ReadMemStats(&m2)
memoryGrowth := int64(m2.Alloc) - int64(m1.Alloc)
t.Logf("Memory growth after 10,000 operations: %d bytes", memoryGrowth)
// Memory growth should be minimal (less than 1MB)
assert.Less(t, memoryGrowth, int64(1024*1024),
"Excessive memory growth detected: %d bytes", memoryGrowth)
}