[WIP] Cleanup: reduce PR complexity

This commit is contained in:
Alex P 2025-09-09 06:52:40 +00:00
parent 0ebfc762f7
commit 00e5148eef
17 changed files with 173 additions and 2312 deletions

View File

@ -71,7 +71,7 @@ func DefaultAdaptiveBufferConfig() AdaptiveBufferConfig {
// Latency targets
TargetLatency: Config.AdaptiveBufferTargetLatency, // Target 20ms latency
MaxLatency: Config.LatencyMonitorTarget, // Max acceptable latency
MaxLatency: Config.MaxLatencyThreshold, // Max acceptable latency
// Adaptation settings
AdaptationInterval: Config.BufferUpdateInterval, // Check every 500ms
@ -89,9 +89,8 @@ type AdaptiveBufferManager struct {
systemMemoryPercent int64 // System memory percentage * 100 (atomic)
adaptationCount int64 // Metrics tracking (atomic)
config AdaptiveBufferConfig
logger zerolog.Logger
processMonitor *ProcessMonitor
config AdaptiveBufferConfig
logger zerolog.Logger
// Control channels
ctx context.Context
@ -119,10 +118,10 @@ func NewAdaptiveBufferManager(config AdaptiveBufferConfig) *AdaptiveBufferManage
currentOutputBufferSize: int64(config.DefaultBufferSize),
config: config,
logger: logger,
processMonitor: GetProcessMonitor(),
ctx: ctx,
cancel: cancel,
lastAdaptation: time.Now(),
ctx: ctx,
cancel: cancel,
lastAdaptation: time.Now(),
}
}
@ -235,30 +234,9 @@ func (abm *AdaptiveBufferManager) adaptationLoop() {
// The algorithm runs periodically and only applies changes when the adaptation interval
// has elapsed, preventing excessive adjustments that could destabilize the audio pipeline.
func (abm *AdaptiveBufferManager) adaptBufferSizes() {
// Collect current system metrics
metrics := abm.processMonitor.GetCurrentMetrics()
if len(metrics) == 0 {
return // No metrics available
}
// Calculate system-wide CPU and memory usage
totalCPU := 0.0
totalMemory := 0.0
processCount := 0
for _, metric := range metrics {
totalCPU += metric.CPUPercent
totalMemory += metric.MemoryPercent
processCount++
}
if processCount == 0 {
return
}
// Store system metrics atomically
systemCPU := totalCPU // Total CPU across all monitored processes
systemMemory := totalMemory / float64(processCount) // Average memory usage
// Use fixed system metrics since monitoring is simplified
systemCPU := 50.0 // Assume moderate CPU usage
systemMemory := 60.0 // Assume moderate memory usage
atomic.StoreInt64(&abm.systemCPUPercent, int64(systemCPU*100))
atomic.StoreInt64(&abm.systemMemoryPercent, int64(systemMemory*100))

View File

@ -117,7 +117,6 @@ type AudioConfigConstants struct {
// Buffer Management
PreallocSize int
MaxPoolSize int
MessagePoolSize int
OptimalSocketBuffer int
@ -131,27 +130,27 @@ type AudioConfigConstants struct {
MinReadEncodeBuffer int
MaxDecodeWriteBuffer int
MinBatchSizeForThreadPinning int
GoroutineMonitorInterval time.Duration
MagicNumber uint32
MaxFrameSize int
WriteTimeout time.Duration
HeaderSize int
MetricsUpdateInterval time.Duration
WarmupSamples int
MetricsChannelBuffer int
LatencyHistorySize int
MaxCPUPercent float64
MinCPUPercent float64
DefaultClockTicks float64
DefaultMemoryGB int
MaxWarmupSamples int
WarmupCPUSamples int
LogThrottleIntervalSec int
MinValidClockTicks int
MaxValidClockTicks int
CPUFactor float64
MemoryFactor float64
LatencyFactor float64
MagicNumber uint32
MaxFrameSize int
WriteTimeout time.Duration
HeaderSize int
MetricsUpdateInterval time.Duration
WarmupSamples int
MetricsChannelBuffer int
LatencyHistorySize int
MaxCPUPercent float64
MinCPUPercent float64
DefaultClockTicks float64
DefaultMemoryGB int
MaxWarmupSamples int
WarmupCPUSamples int
LogThrottleIntervalSec int
MinValidClockTicks int
MaxValidClockTicks int
CPUFactor float64
MemoryFactor float64
LatencyFactor float64
// Adaptive Buffer Configuration
AdaptiveMinBufferSize int // Minimum buffer size in frames for adaptive buffering
@ -172,28 +171,25 @@ type AudioConfigConstants struct {
OutputSupervisorTimeout time.Duration // 5s
BatchProcessingDelay time.Duration // 10ms
AdaptiveOptimizerStability time.Duration // 10s
LatencyMonitorTarget time.Duration // 50ms
// Adaptive Buffer Configuration
// LowCPUThreshold defines CPU usage threshold for buffer size reduction.
LowCPUThreshold float64 // 20% CPU threshold for buffer optimization
// HighCPUThreshold defines CPU usage threshold for buffer size increase.
HighCPUThreshold float64 // 60% CPU threshold
LowMemoryThreshold float64 // 50% memory threshold
HighMemoryThreshold float64 // 75% memory threshold
AdaptiveBufferTargetLatency time.Duration // 20ms target latency
CooldownPeriod time.Duration // 30s cooldown period
RollbackThreshold time.Duration // 300ms rollback threshold
AdaptiveOptimizerLatencyTarget time.Duration // 50ms latency target
MaxLatencyThreshold time.Duration // 200ms max latency
JitterThreshold time.Duration // 20ms jitter threshold
LatencyOptimizationInterval time.Duration // 5s optimization interval
LatencyAdaptiveThreshold float64 // 0.8 adaptive threshold
MicContentionTimeout time.Duration // 200ms contention timeout
PreallocPercentage int // 20% preallocation percentage
BackoffStart time.Duration // 50ms initial backoff
HighCPUThreshold float64 // 60% CPU threshold
LowMemoryThreshold float64 // 50% memory threshold
HighMemoryThreshold float64 // 75% memory threshold
AdaptiveBufferTargetLatency time.Duration // 20ms target latency
CooldownPeriod time.Duration // 30s cooldown period
RollbackThreshold time.Duration // 300ms rollback threshold
MaxLatencyThreshold time.Duration // 200ms max latency
JitterThreshold time.Duration // 20ms jitter threshold
LatencyOptimizationInterval time.Duration // 5s optimization interval
LatencyAdaptiveThreshold float64 // 0.8 adaptive threshold
MicContentionTimeout time.Duration // 200ms contention timeout
PreallocPercentage int // 20% preallocation percentage
BackoffStart time.Duration // 50ms initial backoff
InputMagicNumber uint32 // Magic number for input IPC messages (0x4A4B4D49 "JKMI")
@ -214,29 +210,8 @@ type AudioConfigConstants struct {
// CGO Audio Processing Constants
CGOUsleepMicroseconds int // Sleep duration for CGO usleep calls (1000μs)
CGOPCMBufferSize int // PCM buffer size for CGO audio processing
CGONanosecondsPerSecond float64 // Nanoseconds per second conversion
FrontendOperationDebounceMS int // Frontend operation debounce delay
FrontendSyncDebounceMS int // Frontend sync debounce delay
FrontendSampleRate int // Frontend sample rate
FrontendRetryDelayMS int // Frontend retry delay
FrontendShortDelayMS int // Frontend short delay
FrontendLongDelayMS int // Frontend long delay
FrontendSyncDelayMS int // Frontend sync delay
FrontendMaxRetryAttempts int // Frontend max retry attempts
FrontendAudioLevelUpdateMS int // Frontend audio level update interval
FrontendFFTSize int // Frontend FFT size
FrontendAudioLevelMax int // Frontend max audio level
FrontendReconnectIntervalMS int // Frontend reconnect interval
FrontendSubscriptionDelayMS int // Frontend subscription delay
FrontendDebugIntervalMS int // Frontend debug interval
// Process Monitoring Constants
ProcessMonitorDefaultMemoryGB int // Default memory size for fallback (4GB)
ProcessMonitorKBToBytes int // KB to bytes conversion factor (1024)
ProcessMonitorDefaultClockHz float64 // Default system clock frequency (250.0 Hz)
ProcessMonitorFallbackClockHz float64 // Fallback clock frequency (1000.0 Hz)
ProcessMonitorTraditionalHz float64 // Traditional system clock frequency (100.0 Hz)
CGOPCMBufferSize int // PCM buffer size for CGO audio processing
CGONanosecondsPerSecond float64 // Nanoseconds per second conversion
// Batch Processing Constants
BatchProcessorFramesPerBatch int // Frames processed per batch (4)
@ -272,14 +247,21 @@ type AudioConfigConstants struct {
LatencyPercentile50 int
LatencyPercentile95 int
LatencyPercentile99 int
BufferPoolMaxOperations int
HitRateCalculationBase float64
MaxLatency time.Duration
MinMetricsUpdateInterval time.Duration
MaxMetricsUpdateInterval time.Duration
MinSampleRate int
MaxSampleRate int
MaxChannels int
// Buffer Pool Configuration
BufferPoolDefaultSize int // Default buffer pool size when MaxPoolSize is invalid
BufferPoolControlSize int // Control buffer pool size
ZeroCopyPreallocSizeBytes int // Zero-copy frame pool preallocation size in bytes
ZeroCopyMinPreallocFrames int // Minimum preallocated frames for zero-copy pool
BufferPoolHitRateBase float64 // Base for hit rate percentage calculation
HitRateCalculationBase float64
MaxLatency time.Duration
MinMetricsUpdateInterval time.Duration
MaxMetricsUpdateInterval time.Duration
MinSampleRate int
MaxSampleRate int
MaxChannels int
// CGO Constants
CGOMaxBackoffMicroseconds int // Maximum CGO backoff time (500ms)
@ -329,26 +311,6 @@ type AudioConfigConstants struct {
QualityChangeSettleDelay time.Duration // Delay for quality change to settle
QualityChangeRecoveryDelay time.Duration // Delay before attempting recovery
// Buffer Pool Cache Configuration
BufferPoolCacheSize int // Buffers per goroutine cache (4)
BufferPoolCacheTTL time.Duration // Cache TTL for aggressive cleanup (5s)
BufferPoolMaxCacheEntries int // Maximum cache entries to prevent memory bloat (128)
BufferPoolCacheCleanupInterval time.Duration // Cleanup interval for frequent cleanup (15s)
BufferPoolCacheWarmupThreshold int // Warmup threshold for faster startup (25)
BufferPoolCacheHitRateTarget float64 // Target hit rate for balanced performance (0.80)
BufferPoolMaxCacheSize int // Maximum goroutine caches (256)
BufferPoolCleanupInterval int64 // Cleanup interval in seconds (15)
BufferPoolBufferTTL int64 // Buffer TTL in seconds (30)
BufferPoolControlSize int // Control pool buffer size (512)
BufferPoolMinPreallocBuffers int // Minimum preallocation buffers
BufferPoolMaxPoolSize int // Maximum pool size
BufferPoolChunkBufferCount int // Buffers per chunk
BufferPoolMinChunkSize int // Minimum chunk size (64KB)
BufferPoolInitialChunkCapacity int // Initial chunk capacity
BufferPoolAdaptiveResizeThreshold int // Threshold for adaptive resize
BufferPoolHighHitRateThreshold float64 // High hit rate threshold
BufferPoolOptimizeCacheThreshold int // Threshold for cache optimization
BufferPoolCounterResetThreshold int // Counter reset threshold
}
// DefaultAudioConfig returns the default configuration constants
@ -458,7 +420,7 @@ func DefaultAudioConfig() *AudioConfigConstants {
MaxRestartDelay: 30 * time.Second, // Maximum delay for exponential backoff
// Buffer Management
PreallocSize: 1024 * 1024, // 1MB buffer preallocation
MaxPoolSize: 100, // Maximum object pool size
MessagePoolSize: 1024, // Significantly increased message pool for quality change bursts
OptimalSocketBuffer: 262144, // 256KB optimal socket buffer
@ -521,39 +483,15 @@ func DefaultAudioConfig() *AudioConfigConstants {
QualityChangeSettleDelay: 2 * time.Second, // Delay for quality change to settle
QualityChangeRecoveryDelay: 1 * time.Second, // Delay before attempting recovery
// Buffer Pool Cache Configuration
BufferPoolCacheSize: 4, // Buffers per goroutine cache
BufferPoolCacheTTL: 5 * time.Second, // Cache TTL for aggressive cleanup
BufferPoolMaxCacheEntries: 128, // Maximum cache entries to prevent memory bloat
BufferPoolCacheCleanupInterval: 15 * time.Second, // Cleanup interval for frequent cleanup
BufferPoolCacheWarmupThreshold: 25, // Warmup threshold for faster startup
BufferPoolCacheHitRateTarget: 0.80, // Target hit rate for balanced performance
BufferPoolMaxCacheSize: 256, // Maximum goroutine caches
BufferPoolCleanupInterval: 15, // Cleanup interval in seconds
BufferPoolBufferTTL: 30, // Buffer TTL in seconds
BufferPoolControlSize: 512, // Control pool buffer size
BufferPoolMinPreallocBuffers: 16, // Minimum preallocation buffers (reduced from 50)
BufferPoolMaxPoolSize: 128, // Maximum pool size (reduced from 256)
BufferPoolChunkBufferCount: 8, // Buffers per chunk (reduced from 64 to prevent large allocations)
BufferPoolMinChunkSize: 8192, // Minimum chunk size (8KB, reduced from 64KB)
BufferPoolInitialChunkCapacity: 4, // Initial chunk capacity
BufferPoolAdaptiveResizeThreshold: 100, // Threshold for adaptive resize
BufferPoolHighHitRateThreshold: 0.95, // High hit rate threshold
BufferPoolOptimizeCacheThreshold: 100, // Threshold for cache optimization
BufferPoolCounterResetThreshold: 10000, // Counter reset threshold
// Timing Constants - Optimized for quality change stability
DefaultSleepDuration: 100 * time.Millisecond, // Balanced polling interval
ShortSleepDuration: 10 * time.Millisecond, // Balanced high-frequency polling
LongSleepDuration: 200 * time.Millisecond, // Balanced background task delay
DefaultTickerInterval: 100 * time.Millisecond, // Balanced periodic task interval
BufferUpdateInterval: 250 * time.Millisecond, // Faster buffer size update frequency
InputSupervisorTimeout: 5 * time.Second, // Input monitoring timeout
OutputSupervisorTimeout: 5 * time.Second, // Output monitoring timeout
BatchProcessingDelay: 5 * time.Millisecond, // Reduced batch processing delay
AdaptiveOptimizerStability: 5 * time.Second, // Faster adaptive stability period
LatencyMonitorTarget: 50 * time.Millisecond, // Balanced target latency for monitoring
DefaultSleepDuration: 100 * time.Millisecond, // Balanced polling interval
ShortSleepDuration: 10 * time.Millisecond, // Balanced high-frequency polling
LongSleepDuration: 200 * time.Millisecond, // Balanced background task delay
DefaultTickerInterval: 100 * time.Millisecond, // Balanced periodic task interval
BufferUpdateInterval: 250 * time.Millisecond, // Faster buffer size update frequency
InputSupervisorTimeout: 5 * time.Second, // Input monitoring timeout
OutputSupervisorTimeout: 5 * time.Second, // Output monitoring timeout
BatchProcessingDelay: 5 * time.Millisecond, // Reduced batch processing delay
// Adaptive Buffer Configuration - Optimized for single-core RV1106G3
LowCPUThreshold: 0.40, // Adjusted for single-core ARM system
@ -568,9 +506,8 @@ func DefaultAudioConfig() *AudioConfigConstants {
AdaptiveDefaultBufferSize: 512, // Higher default for stability during bursts
// Adaptive Optimizer Configuration - Faster response
CooldownPeriod: 15 * time.Second, // Reduced cooldown period
RollbackThreshold: 200 * time.Millisecond, // Lower rollback threshold
AdaptiveOptimizerLatencyTarget: 30 * time.Millisecond, // Reduced latency target
CooldownPeriod: 15 * time.Second, // Reduced cooldown period
RollbackThreshold: 200 * time.Millisecond, // Lower rollback threshold
// Latency Monitor Configuration - More aggressive monitoring
MaxLatencyThreshold: 150 * time.Millisecond, // Lower max latency threshold
@ -609,29 +546,6 @@ func DefaultAudioConfig() *AudioConfigConstants {
CGOPCMBufferSize: 1920, // 1920 samples for PCM buffer (max 2ch*960)
CGONanosecondsPerSecond: 1000000000.0, // 1000000000.0 for nanosecond conversions
// Frontend Constants - Balanced for stability
FrontendOperationDebounceMS: 1000, // 1000ms debounce for frontend operations
FrontendSyncDebounceMS: 1000, // 1000ms debounce for sync operations
FrontendSampleRate: 48000, // 48000Hz sample rate for frontend audio
FrontendRetryDelayMS: 500, // 500ms retry delay
FrontendShortDelayMS: 200, // 200ms short delay
FrontendLongDelayMS: 300, // 300ms long delay
FrontendSyncDelayMS: 500, // 500ms sync delay
FrontendMaxRetryAttempts: 3, // 3 maximum retry attempts
FrontendAudioLevelUpdateMS: 100, // 100ms audio level update interval
FrontendFFTSize: 256, // 256 FFT size for audio analysis
FrontendAudioLevelMax: 100, // 100 maximum audio level
FrontendReconnectIntervalMS: 3000, // 3000ms reconnect interval
FrontendSubscriptionDelayMS: 100, // 100ms subscription delay
FrontendDebugIntervalMS: 5000, // 5000ms debug interval
// Process Monitor Constants
ProcessMonitorDefaultMemoryGB: 4, // 4GB default memory for fallback
ProcessMonitorKBToBytes: 1024, // 1024 conversion factor
ProcessMonitorDefaultClockHz: 250.0, // 250.0 Hz default for ARM systems
ProcessMonitorFallbackClockHz: 1000.0, // 1000.0 Hz fallback clock
ProcessMonitorTraditionalHz: 100.0, // 100.0 Hz traditional clock
// Batch Processing Constants - Optimized for quality change bursts
BatchProcessorFramesPerBatch: 16, // Larger batches for quality changes
BatchProcessorTimeout: 20 * time.Millisecond, // Longer timeout for bursts
@ -686,9 +600,15 @@ func DefaultAudioConfig() *AudioConfigConstants {
LatencyPercentile95: 95, // 95th percentile calculation factor
LatencyPercentile99: 99, // 99th percentile calculation factor
// Buffer Pool Configuration
BufferPoolDefaultSize: 64, // Default buffer pool size when MaxPoolSize is invalid
BufferPoolControlSize: 512, // Control buffer pool size
ZeroCopyPreallocSizeBytes: 1024 * 1024, // Zero-copy frame pool preallocation size in bytes (1MB)
ZeroCopyMinPreallocFrames: 1, // Minimum preallocated frames for zero-copy pool
BufferPoolHitRateBase: 100.0, // Base for hit rate percentage calculation
// Buffer Pool Efficiency Constants
BufferPoolMaxOperations: 1000, // 1000 operations for efficiency tracking
HitRateCalculationBase: 100.0, // 100.0 base for hit rate percentage calculation
HitRateCalculationBase: 100.0, // 100.0 base for hit rate percentage calculation
// Validation Constants
MaxLatency: 500 * time.Millisecond, // 500ms maximum allowed latency
@ -733,9 +653,6 @@ func DefaultAudioConfig() *AudioConfigConstants {
// Batch Audio Processing Configuration
MinBatchSizeForThreadPinning: 5, // Minimum batch size to pin thread
// Goroutine Monitoring Configuration
GoroutineMonitorInterval: 30 * time.Second, // 30s monitoring interval
// Performance Configuration Flags - Production optimizations
}

View File

@ -158,78 +158,6 @@ var (
},
)
// Audio subprocess process metrics
audioProcessCpuPercent = promauto.NewGauge(
prometheus.GaugeOpts{
Name: "jetkvm_audio_process_cpu_percent",
Help: "CPU usage percentage of audio output subprocess",
},
)
audioProcessMemoryPercent = promauto.NewGauge(
prometheus.GaugeOpts{
Name: "jetkvm_audio_process_memory_percent",
Help: "Memory usage percentage of audio output subprocess",
},
)
audioProcessMemoryRssBytes = promauto.NewGauge(
prometheus.GaugeOpts{
Name: "jetkvm_audio_process_memory_rss_bytes",
Help: "RSS memory usage in bytes of audio output subprocess",
},
)
audioProcessMemoryVmsBytes = promauto.NewGauge(
prometheus.GaugeOpts{
Name: "jetkvm_audio_process_memory_vms_bytes",
Help: "VMS memory usage in bytes of audio output subprocess",
},
)
audioProcessRunning = promauto.NewGauge(
prometheus.GaugeOpts{
Name: "jetkvm_audio_process_running",
Help: "Whether audio output subprocess is running (1=running, 0=stopped)",
},
)
// Microphone subprocess process metrics
microphoneProcessCpuPercent = promauto.NewGauge(
prometheus.GaugeOpts{
Name: "jetkvm_microphone_process_cpu_percent",
Help: "CPU usage percentage of microphone input subprocess",
},
)
microphoneProcessMemoryPercent = promauto.NewGauge(
prometheus.GaugeOpts{
Name: "jetkvm_microphone_process_memory_percent",
Help: "Memory usage percentage of microphone input subprocess",
},
)
microphoneProcessMemoryRssBytes = promauto.NewGauge(
prometheus.GaugeOpts{
Name: "jetkvm_microphone_process_memory_rss_bytes",
Help: "RSS memory usage in bytes of microphone input subprocess",
},
)
microphoneProcessMemoryVmsBytes = promauto.NewGauge(
prometheus.GaugeOpts{
Name: "jetkvm_microphone_process_memory_vms_bytes",
Help: "VMS memory usage in bytes of microphone input subprocess",
},
)
microphoneProcessRunning = promauto.NewGauge(
prometheus.GaugeOpts{
Name: "jetkvm_microphone_process_running",
Help: "Whether microphone input subprocess is running (1=running, 0=stopped)",
},
)
// Device health metrics
// Removed device health metrics - functionality not used
@ -446,42 +374,6 @@ func UpdateMicrophoneMetrics(metrics UnifiedAudioMetrics) {
atomic.StoreInt64(&lastMetricsUpdate, time.Now().Unix())
}
// UpdateAudioProcessMetrics updates Prometheus metrics with audio subprocess data
func UpdateAudioProcessMetrics(metrics ProcessMetrics, isRunning bool) {
metricsUpdateMutex.Lock()
defer metricsUpdateMutex.Unlock()
audioProcessCpuPercent.Set(metrics.CPUPercent)
audioProcessMemoryPercent.Set(metrics.MemoryPercent)
audioProcessMemoryRssBytes.Set(float64(metrics.MemoryRSS))
audioProcessMemoryVmsBytes.Set(float64(metrics.MemoryVMS))
if isRunning {
audioProcessRunning.Set(1)
} else {
audioProcessRunning.Set(0)
}
atomic.StoreInt64(&lastMetricsUpdate, time.Now().Unix())
}
// UpdateMicrophoneProcessMetrics updates Prometheus metrics with microphone subprocess data
func UpdateMicrophoneProcessMetrics(metrics ProcessMetrics, isRunning bool) {
metricsUpdateMutex.Lock()
defer metricsUpdateMutex.Unlock()
microphoneProcessCpuPercent.Set(metrics.CPUPercent)
microphoneProcessMemoryPercent.Set(metrics.MemoryPercent)
microphoneProcessMemoryRssBytes.Set(float64(metrics.MemoryRSS))
microphoneProcessMemoryVmsBytes.Set(float64(metrics.MemoryVMS))
if isRunning {
microphoneProcessRunning.Set(1)
} else {
microphoneProcessRunning.Set(0)
}
atomic.StoreInt64(&lastMetricsUpdate, time.Now().Unix())
}
// UpdateAdaptiveBufferMetrics updates Prometheus metrics with adaptive buffer information
func UpdateAdaptiveBufferMetrics(inputBufferSize, outputBufferSize int, cpuPercent, memoryPercent float64, adjustmentMade bool) {
metricsUpdateMutex.Lock()

View File

@ -218,32 +218,6 @@ func ValidateOutputIPCConfig(sampleRate, channels, frameSize int) error {
return nil
}
// ValidateLatencyConfig validates latency monitor configuration
func ValidateLatencyConfig(config LatencyConfig) error {
if err := ValidateLatency(config.TargetLatency); err != nil {
return err
}
if err := ValidateLatency(config.MaxLatency); err != nil {
return err
}
if config.TargetLatency >= Config.MaxLatency {
return ErrInvalidLatency
}
if err := ValidateMetricsInterval(config.OptimizationInterval); err != nil {
return err
}
if config.HistorySize <= 0 {
return ErrInvalidBufferSize
}
if config.JitterThreshold < 0 {
return ErrInvalidLatency
}
if config.AdaptiveThreshold < 0 || config.AdaptiveThreshold > 1.0 {
return ErrInvalidConfiguration
}
return nil
}
// ValidateSampleRate validates audio sample rate values
// Optimized to use AudioConfigCache for frequently accessed values
func ValidateSampleRate(sampleRate int) error {

View File

@ -115,7 +115,6 @@ func (aim *AudioInputManager) WriteOpusFrame(frame []byte) error {
Msg("High audio processing latency detected")
// Record latency for goroutine cleanup optimization
RecordAudioLatency(latencyMs)
}
if err != nil {
@ -156,7 +155,6 @@ func (aim *AudioInputManager) WriteOpusFrameZeroCopy(frame *ZeroCopyAudioFrame)
Msg("High audio processing latency detected")
// Record latency for goroutine cleanup optimization
RecordAudioLatency(latencyMs)
}
if err != nil {

View File

@ -135,7 +135,6 @@ func (ais *AudioInputSupervisor) startProcess() error {
ais.logger.Info().Int("pid", ais.processPID).Strs("args", args).Strs("opus_env", ais.opusEnv).Msg("audio input server process started")
// Add process to monitoring
ais.processMonitor.AddProcess(ais.processPID, "audio-input-server")
// Connect client to the server
go ais.connectClient()

View File

@ -117,10 +117,6 @@ type UnifiedAudioServer struct {
socketPath string
magicNumber uint32
socketBufferConfig SocketBufferConfig
// Performance monitoring
latencyMonitor *LatencyMonitor
adaptiveOptimizer *AdaptiveOptimizer
}
// NewUnifiedAudioServer creates a new unified audio server
@ -148,8 +144,6 @@ func NewUnifiedAudioServer(isInput bool) (*UnifiedAudioServer, error) {
messageChan: make(chan *UnifiedIPCMessage, Config.ChannelBufferSize),
processChan: make(chan *UnifiedIPCMessage, Config.ChannelBufferSize),
socketBufferConfig: DefaultSocketBufferConfig(),
latencyMonitor: nil,
adaptiveOptimizer: nil,
}
return server, nil
@ -365,10 +359,6 @@ func (s *UnifiedAudioServer) SendFrame(frame []byte) error {
}
// Record latency for monitoring
if s.latencyMonitor != nil {
writeLatency := time.Since(start)
s.latencyMonitor.RecordLatency(writeLatency, "ipc_write")
}
atomic.AddInt64(&s.totalFrames, 1)
return nil

View File

@ -28,7 +28,6 @@ type BaseSupervisor struct {
processPID int
// Process monitoring
processMonitor *ProcessMonitor
// Exit tracking
lastExitCode int
@ -45,10 +44,10 @@ type BaseSupervisor struct {
func NewBaseSupervisor(componentName string) *BaseSupervisor {
logger := logging.GetDefaultLogger().With().Str("component", componentName).Logger()
return &BaseSupervisor{
logger: &logger,
processMonitor: GetProcessMonitor(),
stopChan: make(chan struct{}),
processDone: make(chan struct{}),
logger: &logger,
stopChan: make(chan struct{}),
processDone: make(chan struct{}),
}
}
@ -211,7 +210,6 @@ func (bs *BaseSupervisor) waitForProcessExit(processType string) {
bs.mutex.Unlock()
// Remove process from monitoring
bs.processMonitor.RemoveProcess(pid)
if exitCode != 0 {
bs.logger.Error().Int("pid", pid).Int("exit_code", exitCode).Msgf("%s process exited with error", processType)

View File

@ -1,329 +0,0 @@
package audio
import (
"context"
"sync"
"sync/atomic"
"time"
"github.com/rs/zerolog"
)
// AdaptiveOptimizer automatically adjusts audio parameters based on latency metrics
type AdaptiveOptimizer struct {
// Atomic fields MUST be first for ARM32 alignment (int64 fields need 8-byte alignment)
optimizationCount int64 // Number of optimizations performed (atomic)
lastOptimization int64 // Timestamp of last optimization (atomic)
optimizationLevel int64 // Current optimization level (0-10) (atomic)
stabilityScore int64 // Current stability score (0-100) (atomic)
optimizationInterval int64 // Current optimization interval in nanoseconds (atomic)
latencyMonitor *LatencyMonitor
bufferManager *AdaptiveBufferManager
logger zerolog.Logger
// Control channels
ctx context.Context
cancel context.CancelFunc
wg sync.WaitGroup
// Configuration
config OptimizerConfig
// Stability tracking
stabilityHistory []StabilityMetric
stabilityMutex sync.RWMutex
}
// StabilityMetric tracks system stability over time
type StabilityMetric struct {
Timestamp time.Time
LatencyStdev float64
CPUVariance float64
MemoryStable bool
ErrorRate float64
StabilityScore int
}
// OptimizerConfig holds configuration for the adaptive optimizer
type OptimizerConfig struct {
MaxOptimizationLevel int // Maximum optimization level (0-10)
CooldownPeriod time.Duration // Minimum time between optimizations
Aggressiveness float64 // How aggressively to optimize (0.0-1.0)
RollbackThreshold time.Duration // Latency threshold to rollback optimizations
StabilityPeriod time.Duration // Time to wait for stability after optimization
// Adaptive interval configuration
MinOptimizationInterval time.Duration // Minimum optimization interval (high stability)
MaxOptimizationInterval time.Duration // Maximum optimization interval (low stability)
StabilityThreshold int // Stability score threshold for interval adjustment
StabilityHistorySize int // Number of stability metrics to track
}
// DefaultOptimizerConfig returns a sensible default configuration
func DefaultOptimizerConfig() OptimizerConfig {
return OptimizerConfig{
MaxOptimizationLevel: 8,
CooldownPeriod: Config.CooldownPeriod,
Aggressiveness: Config.OptimizerAggressiveness,
RollbackThreshold: Config.RollbackThreshold,
StabilityPeriod: Config.AdaptiveOptimizerStability,
// Adaptive interval defaults
MinOptimizationInterval: 100 * time.Millisecond, // High stability: check every 100ms
MaxOptimizationInterval: 2 * time.Second, // Low stability: check every 2s
StabilityThreshold: 70, // Stability score threshold
StabilityHistorySize: 20, // Track last 20 stability metrics
}
}
// NewAdaptiveOptimizer creates a new adaptive optimizer
func NewAdaptiveOptimizer(latencyMonitor *LatencyMonitor, bufferManager *AdaptiveBufferManager, config OptimizerConfig, logger zerolog.Logger) *AdaptiveOptimizer {
ctx, cancel := context.WithCancel(context.Background())
optimizer := &AdaptiveOptimizer{
latencyMonitor: latencyMonitor,
bufferManager: bufferManager,
config: config,
logger: logger.With().Str("component", "adaptive-optimizer").Logger(),
ctx: ctx,
cancel: cancel,
stabilityHistory: make([]StabilityMetric, 0, config.StabilityHistorySize),
}
// Initialize stability score and optimization interval
atomic.StoreInt64(&optimizer.stabilityScore, 50) // Start with medium stability
atomic.StoreInt64(&optimizer.optimizationInterval, int64(config.MaxOptimizationInterval))
// Register as latency monitor callback
latencyMonitor.AddOptimizationCallback(optimizer.handleLatencyOptimization)
return optimizer
}
// Start begins the adaptive optimization process
func (ao *AdaptiveOptimizer) Start() {
ao.wg.Add(1)
go ao.optimizationLoop()
ao.logger.Debug().Msg("adaptive optimizer started")
}
// Stop stops the adaptive optimizer
func (ao *AdaptiveOptimizer) Stop() {
ao.cancel()
ao.wg.Wait()
ao.logger.Debug().Msg("adaptive optimizer stopped")
}
// initializeStrategies sets up the available optimization strategies
// handleLatencyOptimization is called when latency optimization is needed
func (ao *AdaptiveOptimizer) handleLatencyOptimization(metrics LatencyMetrics) error {
currentLevel := atomic.LoadInt64(&ao.optimizationLevel)
lastOpt := atomic.LoadInt64(&ao.lastOptimization)
// Check cooldown period
if time.Since(time.Unix(0, lastOpt)) < ao.config.CooldownPeriod {
return nil
}
// Determine if we need to increase or decrease optimization level
targetLevel := ao.calculateTargetOptimizationLevel(metrics)
if targetLevel > currentLevel {
return ao.increaseOptimization(int(targetLevel))
} else if targetLevel < currentLevel {
return ao.decreaseOptimization(int(targetLevel))
}
return nil
}
// calculateTargetOptimizationLevel determines the appropriate optimization level
func (ao *AdaptiveOptimizer) calculateTargetOptimizationLevel(metrics LatencyMetrics) int64 {
// Base calculation on current latency vs target
latencyRatio := float64(metrics.Current) / float64(Config.AdaptiveOptimizerLatencyTarget) // 50ms target
// Adjust based on trend
switch metrics.Trend {
case LatencyTrendIncreasing:
latencyRatio *= 1.2 // Be more aggressive
case LatencyTrendDecreasing:
latencyRatio *= 0.8 // Be less aggressive
case LatencyTrendVolatile:
latencyRatio *= 1.1 // Slightly more aggressive
}
// Apply aggressiveness factor
latencyRatio *= ao.config.Aggressiveness
// Convert to optimization level
targetLevel := int64(latencyRatio * Config.LatencyScalingFactor) // Scale to 0-10 range
if targetLevel > int64(ao.config.MaxOptimizationLevel) {
targetLevel = int64(ao.config.MaxOptimizationLevel)
}
if targetLevel < 0 {
targetLevel = 0
}
return targetLevel
}
// increaseOptimization applies optimization strategies up to the target level
func (ao *AdaptiveOptimizer) increaseOptimization(targetLevel int) error {
atomic.StoreInt64(&ao.optimizationLevel, int64(targetLevel))
atomic.StoreInt64(&ao.lastOptimization, time.Now().UnixNano())
atomic.AddInt64(&ao.optimizationCount, 1)
return nil
}
// decreaseOptimization rolls back optimization strategies to the target level
func (ao *AdaptiveOptimizer) decreaseOptimization(targetLevel int) error {
atomic.StoreInt64(&ao.optimizationLevel, int64(targetLevel))
atomic.StoreInt64(&ao.lastOptimization, time.Now().UnixNano())
return nil
}
// optimizationLoop runs the main optimization monitoring loop
func (ao *AdaptiveOptimizer) optimizationLoop() {
defer ao.wg.Done()
// Start with initial interval
currentInterval := time.Duration(atomic.LoadInt64(&ao.optimizationInterval))
ticker := time.NewTicker(currentInterval)
defer ticker.Stop()
for {
select {
case <-ao.ctx.Done():
return
case <-ticker.C:
// Update stability metrics and check for optimization needs
ao.updateStabilityMetrics()
ao.checkStability()
// Adjust optimization interval based on current stability
newInterval := ao.calculateOptimizationInterval()
if newInterval != currentInterval {
currentInterval = newInterval
ticker.Reset(currentInterval)
ao.logger.Debug().Dur("new_interval", currentInterval).Int64("stability_score", atomic.LoadInt64(&ao.stabilityScore)).Msg("adjusted optimization interval")
}
}
}
}
// checkStability monitors system stability and rolls back if needed
func (ao *AdaptiveOptimizer) checkStability() {
metrics := ao.latencyMonitor.GetMetrics()
// Check if we need to rollback due to excessive latency
if metrics.Current > ao.config.RollbackThreshold {
currentLevel := int(atomic.LoadInt64(&ao.optimizationLevel))
if currentLevel > 0 {
ao.logger.Warn().Dur("current_latency", metrics.Current).Dur("threshold", ao.config.RollbackThreshold).Msg("rolling back optimizations due to excessive latency")
if err := ao.decreaseOptimization(currentLevel - 1); err != nil {
ao.logger.Error().Err(err).Msg("failed to decrease optimization level")
}
}
}
}
// updateStabilityMetrics calculates and stores current system stability metrics
func (ao *AdaptiveOptimizer) updateStabilityMetrics() {
metrics := ao.latencyMonitor.GetMetrics()
// Calculate stability score based on multiple factors
stabilityScore := ao.calculateStabilityScore(metrics)
atomic.StoreInt64(&ao.stabilityScore, int64(stabilityScore))
// Store stability metric in history
stabilityMetric := StabilityMetric{
Timestamp: time.Now(),
LatencyStdev: float64(metrics.Jitter), // Use Jitter as variance indicator
CPUVariance: 0.0, // TODO: Get from system metrics
MemoryStable: true, // TODO: Get from system metrics
ErrorRate: 0.0, // TODO: Get from error tracking
StabilityScore: stabilityScore,
}
ao.stabilityMutex.Lock()
ao.stabilityHistory = append(ao.stabilityHistory, stabilityMetric)
if len(ao.stabilityHistory) > ao.config.StabilityHistorySize {
ao.stabilityHistory = ao.stabilityHistory[1:]
}
ao.stabilityMutex.Unlock()
}
// calculateStabilityScore computes a stability score (0-100) based on system metrics
func (ao *AdaptiveOptimizer) calculateStabilityScore(metrics LatencyMetrics) int {
// Base score starts at 100 (perfect stability)
score := 100.0
// Penalize high jitter (latency variance)
if metrics.Jitter > 0 && metrics.Average > 0 {
jitterRatio := float64(metrics.Jitter) / float64(metrics.Average)
variancePenalty := jitterRatio * 50 // Scale jitter impact
score -= variancePenalty
}
// Penalize latency trend volatility
switch metrics.Trend {
case LatencyTrendVolatile:
score -= 20
case LatencyTrendIncreasing:
score -= 10
case LatencyTrendDecreasing:
score += 5 // Slight bonus for improving latency
}
// Ensure score is within bounds
if score < 0 {
score = 0
}
if score > 100 {
score = 100
}
return int(score)
}
// calculateOptimizationInterval determines the optimization interval based on stability
func (ao *AdaptiveOptimizer) calculateOptimizationInterval() time.Duration {
stabilityScore := atomic.LoadInt64(&ao.stabilityScore)
// High stability = shorter intervals (more frequent optimization)
// Low stability = longer intervals (less frequent optimization)
if stabilityScore >= int64(ao.config.StabilityThreshold) {
// High stability: use minimum interval
interval := ao.config.MinOptimizationInterval
atomic.StoreInt64(&ao.optimizationInterval, int64(interval))
return interval
} else {
// Low stability: scale interval based on stability score
// Lower stability = longer intervals
stabilityRatio := float64(stabilityScore) / float64(ao.config.StabilityThreshold)
minInterval := float64(ao.config.MinOptimizationInterval)
maxInterval := float64(ao.config.MaxOptimizationInterval)
// Linear interpolation between min and max intervals
interval := time.Duration(minInterval + (maxInterval-minInterval)*(1.0-stabilityRatio))
atomic.StoreInt64(&ao.optimizationInterval, int64(interval))
return interval
}
}
// GetOptimizationStats returns current optimization statistics
func (ao *AdaptiveOptimizer) GetOptimizationStats() map[string]interface{} {
return map[string]interface{}{
"optimization_level": atomic.LoadInt64(&ao.optimizationLevel),
"optimization_count": atomic.LoadInt64(&ao.optimizationCount),
"last_optimization": time.Unix(0, atomic.LoadInt64(&ao.lastOptimization)),
"stability_score": atomic.LoadInt64(&ao.stabilityScore),
"optimization_interval": time.Duration(atomic.LoadInt64(&ao.optimizationInterval)),
}
}
// Strategy implementation methods (stubs for now)

View File

@ -1,144 +0,0 @@
package audio
import (
"runtime"
"sync/atomic"
"time"
"github.com/jetkvm/kvm/internal/logging"
)
// GoroutineMonitor tracks goroutine count and provides cleanup mechanisms
type GoroutineMonitor struct {
baselineCount int
peakCount int
lastCount int
monitorInterval time.Duration
lastCheck time.Time
enabled int32
}
// Global goroutine monitor instance
var globalGoroutineMonitor *GoroutineMonitor
// NewGoroutineMonitor creates a new goroutine monitor
func NewGoroutineMonitor(monitorInterval time.Duration) *GoroutineMonitor {
if monitorInterval <= 0 {
monitorInterval = 30 * time.Second
}
// Get current goroutine count as baseline
baselineCount := runtime.NumGoroutine()
return &GoroutineMonitor{
baselineCount: baselineCount,
peakCount: baselineCount,
lastCount: baselineCount,
monitorInterval: monitorInterval,
lastCheck: time.Now(),
}
}
// Start begins goroutine monitoring
func (gm *GoroutineMonitor) Start() {
if !atomic.CompareAndSwapInt32(&gm.enabled, 0, 1) {
return // Already running
}
go gm.monitorLoop()
}
// Stop stops goroutine monitoring
func (gm *GoroutineMonitor) Stop() {
atomic.StoreInt32(&gm.enabled, 0)
}
// monitorLoop periodically checks goroutine count
func (gm *GoroutineMonitor) monitorLoop() {
logger := logging.GetDefaultLogger().With().Str("component", "goroutine-monitor").Logger()
logger.Info().Int("baseline", gm.baselineCount).Msg("goroutine monitor started")
for atomic.LoadInt32(&gm.enabled) == 1 {
time.Sleep(gm.monitorInterval)
gm.checkGoroutineCount()
}
logger.Info().Msg("goroutine monitor stopped")
}
// checkGoroutineCount checks current goroutine count and logs if it exceeds thresholds
func (gm *GoroutineMonitor) checkGoroutineCount() {
currentCount := runtime.NumGoroutine()
gm.lastCount = currentCount
// Update peak count if needed
if currentCount > gm.peakCount {
gm.peakCount = currentCount
}
// Calculate growth since baseline
growth := currentCount - gm.baselineCount
growthPercent := float64(growth) / float64(gm.baselineCount) * 100
// Log warning if growth exceeds thresholds
logger := logging.GetDefaultLogger().With().Str("component", "goroutine-monitor").Logger()
// Different log levels based on growth severity
if growthPercent > 30 {
// Severe growth - trigger cleanup
logger.Warn().Int("current", currentCount).Int("baseline", gm.baselineCount).
Int("growth", growth).Float64("growth_percent", growthPercent).
Msg("excessive goroutine growth detected - triggering cleanup")
// Force garbage collection to clean up unused resources
runtime.GC()
// Force cleanup of goroutine buffer cache
cleanupGoroutineCache()
} else if growthPercent > 20 {
// Moderate growth - just log warning
logger.Warn().Int("current", currentCount).Int("baseline", gm.baselineCount).
Int("growth", growth).Float64("growth_percent", growthPercent).
Msg("significant goroutine growth detected")
} else if growthPercent > 10 {
// Minor growth - log info
logger.Info().Int("current", currentCount).Int("baseline", gm.baselineCount).
Int("growth", growth).Float64("growth_percent", growthPercent).
Msg("goroutine growth detected")
}
// Update last check time
gm.lastCheck = time.Now()
}
// GetGoroutineStats returns current goroutine statistics
func (gm *GoroutineMonitor) GetGoroutineStats() map[string]interface{} {
return map[string]interface{}{
"current_count": gm.lastCount,
"baseline_count": gm.baselineCount,
"peak_count": gm.peakCount,
"growth": gm.lastCount - gm.baselineCount,
"growth_percent": float64(gm.lastCount-gm.baselineCount) / float64(gm.baselineCount) * 100,
"last_check": gm.lastCheck,
}
}
// GetGoroutineMonitor returns the global goroutine monitor instance
func GetGoroutineMonitor() *GoroutineMonitor {
if globalGoroutineMonitor == nil {
globalGoroutineMonitor = NewGoroutineMonitor(Config.GoroutineMonitorInterval)
}
return globalGoroutineMonitor
}
// StartGoroutineMonitoring starts the global goroutine monitor
func StartGoroutineMonitoring() {
// Goroutine monitoring disabled
}
// StopGoroutineMonitoring stops the global goroutine monitor
func StopGoroutineMonitoring() {
if globalGoroutineMonitor != nil {
globalGoroutineMonitor.Stop()
}
}

View File

@ -1,333 +0,0 @@
package audio
import (
"context"
"sync"
"sync/atomic"
"time"
"github.com/rs/zerolog"
)
// LatencyMonitor tracks and optimizes audio latency in real-time
type LatencyMonitor struct {
// Atomic fields MUST be first for ARM32 alignment (int64 fields need 8-byte alignment)
currentLatency int64 // Current latency in nanoseconds (atomic)
averageLatency int64 // Rolling average latency in nanoseconds (atomic)
minLatency int64 // Minimum observed latency in nanoseconds (atomic)
maxLatency int64 // Maximum observed latency in nanoseconds (atomic)
latencySamples int64 // Number of latency samples collected (atomic)
jitterAccumulator int64 // Accumulated jitter for variance calculation (atomic)
lastOptimization int64 // Timestamp of last optimization in nanoseconds (atomic)
config LatencyConfig
logger zerolog.Logger
// Control channels
ctx context.Context
cancel context.CancelFunc
wg sync.WaitGroup
// Optimization callbacks
optimizationCallbacks []OptimizationCallback
mutex sync.RWMutex
// Performance tracking
latencyHistory []LatencyMeasurement
historyMutex sync.RWMutex
}
// LatencyConfig holds configuration for latency monitoring
type LatencyConfig struct {
TargetLatency time.Duration // Target latency to maintain
MaxLatency time.Duration // Maximum acceptable latency
OptimizationInterval time.Duration // How often to run optimization
HistorySize int // Number of latency measurements to keep
JitterThreshold time.Duration // Jitter threshold for optimization
AdaptiveThreshold float64 // Threshold for adaptive adjustments (0.0-1.0)
}
// LatencyMeasurement represents a single latency measurement
type LatencyMeasurement struct {
Timestamp time.Time
Latency time.Duration
Jitter time.Duration
Source string // Source of the measurement (e.g., "input", "output", "processing")
}
// OptimizationCallback is called when latency optimization is triggered
type OptimizationCallback func(metrics LatencyMetrics) error
// LatencyMetrics provides comprehensive latency statistics
type LatencyMetrics struct {
Current time.Duration
Average time.Duration
Min time.Duration
Max time.Duration
Jitter time.Duration
SampleCount int64
Trend LatencyTrend
}
// LatencyTrend indicates the direction of latency changes
type LatencyTrend int
const (
LatencyTrendStable LatencyTrend = iota
LatencyTrendIncreasing
LatencyTrendDecreasing
LatencyTrendVolatile
)
// DefaultLatencyConfig returns a sensible default configuration
func DefaultLatencyConfig() LatencyConfig {
config := Config
return LatencyConfig{
TargetLatency: config.LatencyMonitorTarget,
MaxLatency: config.MaxLatencyThreshold,
OptimizationInterval: config.LatencyOptimizationInterval,
HistorySize: config.LatencyHistorySize,
JitterThreshold: config.JitterThreshold,
AdaptiveThreshold: config.LatencyAdaptiveThreshold,
}
}
// NewLatencyMonitor creates a new latency monitoring system
func NewLatencyMonitor(config LatencyConfig, logger zerolog.Logger) *LatencyMonitor {
// Validate latency configuration
if err := ValidateLatencyConfig(config); err != nil {
// Log validation error and use default configuration
logger.Error().Err(err).Msg("Invalid latency configuration provided, using defaults")
config = DefaultLatencyConfig()
}
ctx, cancel := context.WithCancel(context.Background())
return &LatencyMonitor{
config: config,
logger: logger.With().Str("component", "latency-monitor").Logger(),
ctx: ctx,
cancel: cancel,
latencyHistory: make([]LatencyMeasurement, 0, config.HistorySize),
minLatency: int64(time.Hour), // Initialize to high value
}
}
// Start begins latency monitoring and optimization
func (lm *LatencyMonitor) Start() {
lm.wg.Add(1)
go lm.monitoringLoop()
}
// Stop stops the latency monitor
func (lm *LatencyMonitor) Stop() {
lm.cancel()
lm.wg.Wait()
}
// RecordLatency records a new latency measurement
func (lm *LatencyMonitor) RecordLatency(latency time.Duration, source string) {
now := time.Now()
latencyNanos := latency.Nanoseconds()
// Update atomic counters
atomic.StoreInt64(&lm.currentLatency, latencyNanos)
atomic.AddInt64(&lm.latencySamples, 1)
// Update min/max
for {
oldMin := atomic.LoadInt64(&lm.minLatency)
if latencyNanos >= oldMin || atomic.CompareAndSwapInt64(&lm.minLatency, oldMin, latencyNanos) {
break
}
}
for {
oldMax := atomic.LoadInt64(&lm.maxLatency)
if latencyNanos <= oldMax || atomic.CompareAndSwapInt64(&lm.maxLatency, oldMax, latencyNanos) {
break
}
}
// Update rolling average using exponential moving average
oldAvg := atomic.LoadInt64(&lm.averageLatency)
newAvg := oldAvg + (latencyNanos-oldAvg)/10 // Alpha = 0.1
atomic.StoreInt64(&lm.averageLatency, newAvg)
// Calculate jitter (difference from average)
jitter := latencyNanos - newAvg
if jitter < 0 {
jitter = -jitter
}
atomic.AddInt64(&lm.jitterAccumulator, jitter)
// Store in history
lm.historyMutex.Lock()
measurement := LatencyMeasurement{
Timestamp: now,
Latency: latency,
Jitter: time.Duration(jitter),
Source: source,
}
if len(lm.latencyHistory) >= lm.config.HistorySize {
// Remove oldest measurement
copy(lm.latencyHistory, lm.latencyHistory[1:])
lm.latencyHistory[len(lm.latencyHistory)-1] = measurement
} else {
lm.latencyHistory = append(lm.latencyHistory, measurement)
}
lm.historyMutex.Unlock()
}
// GetMetrics returns current latency metrics
func (lm *LatencyMonitor) GetMetrics() LatencyMetrics {
current := atomic.LoadInt64(&lm.currentLatency)
average := atomic.LoadInt64(&lm.averageLatency)
min := atomic.LoadInt64(&lm.minLatency)
max := atomic.LoadInt64(&lm.maxLatency)
samples := atomic.LoadInt64(&lm.latencySamples)
jitterSum := atomic.LoadInt64(&lm.jitterAccumulator)
var jitter time.Duration
if samples > 0 {
jitter = time.Duration(jitterSum / samples)
}
return LatencyMetrics{
Current: time.Duration(current),
Average: time.Duration(average),
Min: time.Duration(min),
Max: time.Duration(max),
Jitter: jitter,
SampleCount: samples,
Trend: lm.calculateTrend(),
}
}
// AddOptimizationCallback adds a callback for latency optimization
func (lm *LatencyMonitor) AddOptimizationCallback(callback OptimizationCallback) {
lm.mutex.Lock()
lm.optimizationCallbacks = append(lm.optimizationCallbacks, callback)
lm.mutex.Unlock()
}
// monitoringLoop runs the main monitoring and optimization loop
func (lm *LatencyMonitor) monitoringLoop() {
defer lm.wg.Done()
ticker := time.NewTicker(lm.config.OptimizationInterval)
defer ticker.Stop()
for {
select {
case <-lm.ctx.Done():
return
case <-ticker.C:
lm.runOptimization()
}
}
}
// runOptimization checks if optimization is needed and triggers callbacks with threshold validation.
//
// Validation Rules:
// - Current latency must not exceed MaxLatency (default: 200ms)
// - Average latency checked against adaptive threshold: TargetLatency * (1 + AdaptiveThreshold)
// - Jitter must not exceed JitterThreshold (default: 20ms)
// - All latency values must be non-negative durations
//
// Optimization Triggers:
// - Current latency > MaxLatency: Immediate optimization needed
// - Average latency > adaptive threshold: Gradual optimization needed
// - Jitter > JitterThreshold: Stability optimization needed
//
// Threshold Calculations:
// - Adaptive threshold = TargetLatency * (1.0 + AdaptiveThreshold)
// - Default: 50ms * (1.0 + 0.8) = 90ms adaptive threshold
// - Provides buffer above target before triggering optimization
//
// The function ensures real-time audio performance by monitoring multiple
// latency metrics and triggering optimization callbacks when thresholds are exceeded.
func (lm *LatencyMonitor) runOptimization() {
metrics := lm.GetMetrics()
// Check if optimization is needed
needsOptimization := false
// Check if current latency exceeds threshold
if metrics.Current > lm.config.MaxLatency {
needsOptimization = true
lm.logger.Warn().Dur("current_latency", metrics.Current).Dur("max_latency", lm.config.MaxLatency).Msg("latency exceeds maximum threshold")
}
// Check if average latency is above adaptive threshold
adaptiveThreshold := time.Duration(float64(lm.config.TargetLatency.Nanoseconds()) * (1.0 + lm.config.AdaptiveThreshold))
if metrics.Average > adaptiveThreshold {
needsOptimization = true
}
// Check if jitter is too high
if metrics.Jitter > lm.config.JitterThreshold {
needsOptimization = true
}
if needsOptimization {
atomic.StoreInt64(&lm.lastOptimization, time.Now().UnixNano())
// Run optimization callbacks
lm.mutex.RLock()
callbacks := make([]OptimizationCallback, len(lm.optimizationCallbacks))
copy(callbacks, lm.optimizationCallbacks)
lm.mutex.RUnlock()
for _, callback := range callbacks {
if err := callback(metrics); err != nil {
lm.logger.Error().Err(err).Msg("optimization callback failed")
}
}
}
}
// calculateTrend analyzes recent latency measurements to determine trend
func (lm *LatencyMonitor) calculateTrend() LatencyTrend {
lm.historyMutex.RLock()
defer lm.historyMutex.RUnlock()
if len(lm.latencyHistory) < 10 {
return LatencyTrendStable
}
// Analyze last 10 measurements
recentMeasurements := lm.latencyHistory[len(lm.latencyHistory)-10:]
var increasing, decreasing int
for i := 1; i < len(recentMeasurements); i++ {
if recentMeasurements[i].Latency > recentMeasurements[i-1].Latency {
increasing++
} else if recentMeasurements[i].Latency < recentMeasurements[i-1].Latency {
decreasing++
}
}
// Determine trend based on direction changes
if increasing > 6 {
return LatencyTrendIncreasing
} else if decreasing > 6 {
return LatencyTrendDecreasing
} else if increasing+decreasing > 7 {
return LatencyTrendVolatile
}
return LatencyTrendStable
}
// GetLatencyHistory returns a copy of recent latency measurements
func (lm *LatencyMonitor) GetLatencyHistory() []LatencyMeasurement {
lm.historyMutex.RLock()
defer lm.historyMutex.RUnlock()
history := make([]LatencyMeasurement, len(lm.latencyHistory))
copy(history, lm.latencyHistory)
return history
}

View File

@ -1,406 +0,0 @@
package audio
import (
"bufio"
"fmt"
"os"
"strconv"
"strings"
"sync"
"time"
"github.com/jetkvm/kvm/internal/logging"
"github.com/rs/zerolog"
)
// Variables for process monitoring (using configuration)
var (
// System constants
maxCPUPercent = Config.MaxCPUPercent
minCPUPercent = Config.MinCPUPercent
defaultClockTicks = Config.DefaultClockTicks
defaultMemoryGB = Config.DefaultMemoryGB
// Monitoring thresholds
maxWarmupSamples = Config.MaxWarmupSamples
warmupCPUSamples = Config.WarmupCPUSamples
// Channel buffer size
metricsChannelBuffer = Config.MetricsChannelBuffer
// Clock tick detection ranges
minValidClockTicks = float64(Config.MinValidClockTicks)
maxValidClockTicks = float64(Config.MaxValidClockTicks)
)
// Variables for process monitoring
var (
pageSize = Config.PageSize
)
// ProcessMetrics represents CPU and memory usage metrics for a process
type ProcessMetrics struct {
PID int `json:"pid"`
CPUPercent float64 `json:"cpu_percent"`
MemoryRSS int64 `json:"memory_rss_bytes"`
MemoryVMS int64 `json:"memory_vms_bytes"`
MemoryPercent float64 `json:"memory_percent"`
Timestamp time.Time `json:"timestamp"`
ProcessName string `json:"process_name"`
}
type ProcessMonitor struct {
logger zerolog.Logger
mutex sync.RWMutex
monitoredPIDs map[int]*processState
running bool
stopChan chan struct{}
metricsChan chan ProcessMetrics
updateInterval time.Duration
totalMemory int64
memoryOnce sync.Once
clockTicks float64
clockTicksOnce sync.Once
}
// processState tracks the state needed for CPU calculation
type processState struct {
name string
lastCPUTime int64
lastSysTime int64
lastUserTime int64
lastSample time.Time
warmupSamples int
}
// NewProcessMonitor creates a new process monitor
func NewProcessMonitor() *ProcessMonitor {
return &ProcessMonitor{
logger: logging.GetDefaultLogger().With().Str("component", "process-monitor").Logger(),
monitoredPIDs: make(map[int]*processState),
stopChan: make(chan struct{}),
metricsChan: make(chan ProcessMetrics, metricsChannelBuffer),
updateInterval: GetMetricsUpdateInterval(),
}
}
// Start begins monitoring processes
func (pm *ProcessMonitor) Start() {
pm.mutex.Lock()
defer pm.mutex.Unlock()
if pm.running {
return
}
pm.running = true
go pm.monitorLoop()
pm.logger.Debug().Msg("process monitor started")
}
// Stop stops monitoring processes
func (pm *ProcessMonitor) Stop() {
pm.mutex.Lock()
defer pm.mutex.Unlock()
if !pm.running {
return
}
pm.running = false
close(pm.stopChan)
pm.logger.Debug().Msg("process monitor stopped")
}
// AddProcess adds a process to monitor
func (pm *ProcessMonitor) AddProcess(pid int, name string) {
pm.mutex.Lock()
defer pm.mutex.Unlock()
pm.monitoredPIDs[pid] = &processState{
name: name,
lastSample: time.Now(),
}
pm.logger.Info().Int("pid", pid).Str("name", name).Msg("Added process to monitor")
}
// RemoveProcess removes a process from monitoring
func (pm *ProcessMonitor) RemoveProcess(pid int) {
pm.mutex.Lock()
defer pm.mutex.Unlock()
delete(pm.monitoredPIDs, pid)
pm.logger.Info().Int("pid", pid).Msg("Removed process from monitor")
}
// GetMetricsChan returns the channel for receiving metrics
func (pm *ProcessMonitor) GetMetricsChan() <-chan ProcessMetrics {
return pm.metricsChan
}
// GetCurrentMetrics returns current metrics for all monitored processes
func (pm *ProcessMonitor) GetCurrentMetrics() []ProcessMetrics {
pm.mutex.RLock()
defer pm.mutex.RUnlock()
var metrics []ProcessMetrics
for pid, state := range pm.monitoredPIDs {
if metric, err := pm.collectMetrics(pid, state); err == nil {
metrics = append(metrics, metric)
}
}
return metrics
}
// monitorLoop is the main monitoring loop
func (pm *ProcessMonitor) monitorLoop() {
ticker := time.NewTicker(pm.updateInterval)
defer ticker.Stop()
for {
select {
case <-pm.stopChan:
return
case <-ticker.C:
pm.collectAllMetrics()
}
}
}
func (pm *ProcessMonitor) collectAllMetrics() {
pm.mutex.RLock()
pidsToCheck := make([]int, 0, len(pm.monitoredPIDs))
states := make([]*processState, 0, len(pm.monitoredPIDs))
for pid, state := range pm.monitoredPIDs {
pidsToCheck = append(pidsToCheck, pid)
states = append(states, state)
}
pm.mutex.RUnlock()
deadPIDs := make([]int, 0)
for i, pid := range pidsToCheck {
if metric, err := pm.collectMetrics(pid, states[i]); err == nil {
select {
case pm.metricsChan <- metric:
default:
}
} else {
deadPIDs = append(deadPIDs, pid)
}
}
for _, pid := range deadPIDs {
pm.RemoveProcess(pid)
}
}
func (pm *ProcessMonitor) collectMetrics(pid int, state *processState) (ProcessMetrics, error) {
now := time.Now()
metric := ProcessMetrics{
PID: pid,
Timestamp: now,
ProcessName: state.name,
}
statPath := fmt.Sprintf("/proc/%d/stat", pid)
statData, err := os.ReadFile(statPath)
if err != nil {
return metric, fmt.Errorf("failed to read process statistics from /proc/%d/stat: %w", pid, err)
}
fields := strings.Fields(string(statData))
if len(fields) < 24 {
return metric, fmt.Errorf("invalid process stat format: expected at least 24 fields, got %d from /proc/%d/stat", len(fields), pid)
}
utime, _ := strconv.ParseInt(fields[13], 10, 64)
stime, _ := strconv.ParseInt(fields[14], 10, 64)
totalCPUTime := utime + stime
vsize, _ := strconv.ParseInt(fields[22], 10, 64)
rss, _ := strconv.ParseInt(fields[23], 10, 64)
metric.MemoryRSS = rss * int64(pageSize)
metric.MemoryVMS = vsize
// Calculate CPU percentage
metric.CPUPercent = pm.calculateCPUPercent(totalCPUTime, state, now)
// Increment warmup counter
if state.warmupSamples < maxWarmupSamples {
state.warmupSamples++
}
// Calculate memory percentage (RSS / total system memory)
if totalMem := pm.getTotalMemory(); totalMem > 0 {
metric.MemoryPercent = float64(metric.MemoryRSS) / float64(totalMem) * Config.PercentageMultiplier
}
// Update state for next calculation
state.lastCPUTime = totalCPUTime
state.lastUserTime = utime
state.lastSysTime = stime
state.lastSample = now
return metric, nil
}
// calculateCPUPercent calculates CPU percentage for a process with validation and bounds checking.
//
// Validation Rules:
// - Returns 0.0 for first sample (no baseline for comparison)
// - Requires positive time delta between samples
// - Applies CPU percentage bounds: [MinCPUPercent, MaxCPUPercent]
// - Uses system clock ticks for accurate CPU time conversion
// - Validates clock ticks within range [MinValidClockTicks, MaxValidClockTicks]
//
// Bounds Applied:
// - CPU percentage clamped to [0.01%, 100.0%] (default values)
// - Clock ticks validated within [50, 1000] range (default values)
// - Time delta must be > 0 to prevent division by zero
//
// Warmup Behavior:
// - During warmup period (< WarmupCPUSamples), returns MinCPUPercent for idle processes
// - This indicates process is alive but not consuming significant CPU
//
// The function ensures accurate CPU percentage calculation while preventing
// invalid measurements that could affect system monitoring and adaptive algorithms.
func (pm *ProcessMonitor) calculateCPUPercent(totalCPUTime int64, state *processState, now time.Time) float64 {
if state.lastSample.IsZero() {
// First sample - initialize baseline
state.warmupSamples = 0
return 0.0
}
timeDelta := now.Sub(state.lastSample).Seconds()
cpuDelta := float64(totalCPUTime - state.lastCPUTime)
if timeDelta <= 0 {
return 0.0
}
if cpuDelta > 0 {
// Convert from clock ticks to seconds using actual system clock ticks
clockTicks := pm.getClockTicks()
cpuSeconds := cpuDelta / clockTicks
cpuPercent := (cpuSeconds / timeDelta) * Config.PercentageMultiplier
// Apply bounds
if cpuPercent > maxCPUPercent {
cpuPercent = maxCPUPercent
}
if cpuPercent < minCPUPercent {
cpuPercent = minCPUPercent
}
return cpuPercent
}
// No CPU delta - process was idle
if state.warmupSamples < warmupCPUSamples {
// During warmup, provide a small non-zero value to indicate process is alive
return minCPUPercent
}
return 0.0
}
func (pm *ProcessMonitor) getClockTicks() float64 {
pm.clockTicksOnce.Do(func() {
// Try to detect actual clock ticks from kernel boot parameters or /proc/stat
if data, err := os.ReadFile("/proc/cmdline"); err == nil {
// Look for HZ parameter in kernel command line
cmdline := string(data)
if strings.Contains(cmdline, "HZ=") {
fields := strings.Fields(cmdline)
for _, field := range fields {
if strings.HasPrefix(field, "HZ=") {
if hz, err := strconv.ParseFloat(field[3:], 64); err == nil && hz > 0 {
pm.clockTicks = hz
return
}
}
}
}
}
// Try reading from /proc/timer_list for more accurate detection
if data, err := os.ReadFile("/proc/timer_list"); err == nil {
timer := string(data)
// Look for tick device frequency
lines := strings.Split(timer, "\n")
for _, line := range lines {
if strings.Contains(line, "tick_period:") {
fields := strings.Fields(line)
if len(fields) >= 2 {
if period, err := strconv.ParseInt(fields[1], 10, 64); err == nil && period > 0 {
// Convert nanoseconds to Hz
hz := Config.CGONanosecondsPerSecond / float64(period)
if hz >= minValidClockTicks && hz <= maxValidClockTicks {
pm.clockTicks = hz
return
}
}
}
}
}
}
// Fallback: Most embedded ARM systems (like jetKVM) use 250 Hz or 1000 Hz
// rather than the traditional 100 Hz
pm.clockTicks = defaultClockTicks
pm.logger.Warn().Float64("clock_ticks", pm.clockTicks).Msg("Using fallback clock ticks value")
// Log successful detection for non-fallback values
if pm.clockTicks != defaultClockTicks {
pm.logger.Info().Float64("clock_ticks", pm.clockTicks).Msg("Detected system clock ticks")
}
})
return pm.clockTicks
}
func (pm *ProcessMonitor) getTotalMemory() int64 {
pm.memoryOnce.Do(func() {
file, err := os.Open("/proc/meminfo")
if err != nil {
pm.totalMemory = int64(defaultMemoryGB) * int64(Config.ProcessMonitorKBToBytes) * int64(Config.ProcessMonitorKBToBytes) * int64(Config.ProcessMonitorKBToBytes)
return
}
defer file.Close()
scanner := bufio.NewScanner(file)
for scanner.Scan() {
line := scanner.Text()
if strings.HasPrefix(line, "MemTotal:") {
fields := strings.Fields(line)
if len(fields) >= 2 {
if kb, err := strconv.ParseInt(fields[1], 10, 64); err == nil {
pm.totalMemory = kb * int64(Config.ProcessMonitorKBToBytes)
return
}
}
break
}
}
pm.totalMemory = int64(defaultMemoryGB) * int64(Config.ProcessMonitorKBToBytes) * int64(Config.ProcessMonitorKBToBytes) * int64(Config.ProcessMonitorKBToBytes) // Fallback
})
return pm.totalMemory
}
// GetTotalMemory returns total system memory in bytes (public method)
func (pm *ProcessMonitor) GetTotalMemory() int64 {
return pm.getTotalMemory()
}
// Global process monitor instance
var globalProcessMonitor *ProcessMonitor
var processMonitorOnce sync.Once
// GetProcessMonitor returns the global process monitor instance
func GetProcessMonitor() *ProcessMonitor {
processMonitorOnce.Do(func() {
globalProcessMonitor = NewProcessMonitor()
globalProcessMonitor.Start()
})
return globalProcessMonitor
}

View File

@ -49,7 +49,6 @@ func getOutputStreamingLogger() *zerolog.Logger {
// StartAudioOutputStreaming starts audio output streaming (capturing system audio)
func StartAudioOutputStreaming(send func([]byte)) error {
// Initialize audio monitoring (latency tracking and cache cleanup)
InitializeAudioMonitoring()
if !atomic.CompareAndSwapInt32(&outputStreamingRunning, 0, 1) {
return ErrAudioAlreadyRunning

View File

@ -213,7 +213,6 @@ func (s *AudioOutputSupervisor) startProcess() error {
s.logger.Info().Int("pid", s.processPID).Strs("args", args).Strs("opus_env", s.opusEnv).Msg("audio server process started")
// Add process to monitoring
s.processMonitor.AddProcess(s.processPID, "audio-output-server")
if s.onProcessStart != nil {
s.onProcessStart(s.processPID)

View File

@ -4,804 +4,138 @@
package audio
import (
"runtime"
"sort"
"sync"
"sync/atomic"
"time"
"unsafe"
)
// AudioLatencyInfo holds simplified latency information for cleanup decisions
type AudioLatencyInfo struct {
LatencyMs float64
Timestamp time.Time
}
// Global latency tracking
var (
currentAudioLatency = AudioLatencyInfo{}
currentAudioLatencyLock sync.RWMutex
audioMonitoringInitialized int32 // Atomic flag to track initialization
)
// InitializeAudioMonitoring starts the background goroutines for latency tracking and cache cleanup
// This is safe to call multiple times as it will only initialize once
func InitializeAudioMonitoring() {
// Use atomic CAS to ensure we only initialize once
if atomic.CompareAndSwapInt32(&audioMonitoringInitialized, 0, 1) {
// Start the latency recorder
startLatencyRecorder()
// Start the cleanup goroutine
startCleanupGoroutine()
}
}
// latencyChannel is used for non-blocking latency recording
var latencyChannel = make(chan float64, 10)
// startLatencyRecorder starts the latency recorder goroutine
// This should be called during package initialization
func startLatencyRecorder() {
go latencyRecorderLoop()
}
// latencyRecorderLoop processes latency recordings in the background
func latencyRecorderLoop() {
for latencyMs := range latencyChannel {
currentAudioLatencyLock.Lock()
currentAudioLatency = AudioLatencyInfo{
LatencyMs: latencyMs,
Timestamp: time.Now(),
}
currentAudioLatencyLock.Unlock()
}
}
// RecordAudioLatency records the current audio processing latency
// This is called from the audio input manager when latency is measured
// It is non-blocking to ensure zero overhead in the critical audio path
func RecordAudioLatency(latencyMs float64) {
// Non-blocking send - if channel is full, we drop the update
select {
case latencyChannel <- latencyMs:
// Successfully sent
default:
// Channel full, drop this update to avoid blocking the audio path
}
}
// GetAudioLatencyMetrics returns the current audio latency information
// Returns nil if no latency data is available or if it's too old
func GetAudioLatencyMetrics() *AudioLatencyInfo {
currentAudioLatencyLock.RLock()
defer currentAudioLatencyLock.RUnlock()
// Check if we have valid latency data
if currentAudioLatency.Timestamp.IsZero() {
return nil
}
// Check if the data is too old (more than 5 seconds)
if time.Since(currentAudioLatency.Timestamp) > 5*time.Second {
return nil
}
return &AudioLatencyInfo{
LatencyMs: currentAudioLatency.LatencyMs,
Timestamp: currentAudioLatency.Timestamp,
}
}
// Enhanced lock-free buffer cache for per-goroutine optimization
type lockFreeBufferCache struct {
buffers [8]*[]byte // Increased from 4 to 8 buffers per goroutine cache for better hit rates
}
// Buffer pool constants are now configured via Config
// See core_config_constants.go for default values
// TTL tracking for goroutine cache entries
type cacheEntry struct {
cache *lockFreeBufferCache
lastAccess int64 // Unix timestamp of last access
gid int64 // Goroutine ID for better tracking
}
// Per-goroutine buffer cache using goroutine-local storage
var goroutineBufferCache = make(map[int64]*lockFreeBufferCache)
var goroutineCacheMutex sync.RWMutex
var goroutineCacheWithTTL = make(map[int64]*cacheEntry)
var lastCleanupTime int64 // Unix timestamp of last cleanup
// getGoroutineID extracts goroutine ID from runtime stack for cache key
func getGoroutineID() int64 {
b := make([]byte, 64)
b = b[:runtime.Stack(b, false)]
// Parse "goroutine 123 [running]:" format
for i := 10; i < len(b); i++ {
if b[i] == ' ' {
id := int64(0)
for j := 10; j < i; j++ {
if b[j] >= '0' && b[j] <= '9' {
id = id*10 + int64(b[j]-'0')
}
}
return id
}
}
return 0
}
// Map of goroutine ID to cache entry with TTL tracking (declared above)
// cleanupChannel is used for asynchronous cleanup requests
var cleanupChannel = make(chan struct{}, 1)
// startCleanupGoroutine starts the cleanup goroutine
// This should be called during package initialization
func startCleanupGoroutine() {
go cleanupLoop()
}
// cleanupLoop processes cleanup requests in the background
func cleanupLoop() {
ticker := time.NewTicker(10 * time.Second)
defer ticker.Stop()
for {
select {
case <-cleanupChannel:
// Received explicit cleanup request
performCleanup(true)
case <-ticker.C:
// Regular cleanup check
performCleanup(false)
}
}
}
// requestCleanup signals the cleanup goroutine to perform a cleanup
// This is non-blocking and can be called from the critical path
func requestCleanup() {
select {
case cleanupChannel <- struct{}{}:
// Successfully requested cleanup
default:
// Channel full, cleanup already pending
}
}
// performCleanup does the actual cache cleanup work
// This runs in a dedicated goroutine, not in the critical path
func performCleanup(forced bool) {
now := time.Now().Unix()
lastCleanup := atomic.LoadInt64(&lastCleanupTime)
// Check if we're in a high-latency situation
isHighLatency := false
latencyMetrics := GetAudioLatencyMetrics()
if latencyMetrics != nil && latencyMetrics.LatencyMs > 10.0 {
// Under high latency, be more aggressive with cleanup
isHighLatency = true
}
// Only cleanup if enough time has passed (less time if high latency) or if forced
interval := Config.BufferPoolCleanupInterval
if isHighLatency {
interval = Config.BufferPoolCleanupInterval / 2 // More frequent cleanup under high latency
}
if !forced && now-lastCleanup < interval {
return
}
// Try to acquire cleanup lock atomically
if !atomic.CompareAndSwapInt64(&lastCleanupTime, lastCleanup, now) {
return // Another goroutine is already cleaning up
}
// Perform the actual cleanup
doCleanupGoroutineCache()
}
// cleanupGoroutineCache triggers an asynchronous cleanup of the goroutine cache
// This is safe to call from the critical path as it's non-blocking
func cleanupGoroutineCache() {
// Request asynchronous cleanup
requestCleanup()
}
// The actual cleanup implementation that runs in the background goroutine
func doCleanupGoroutineCache() {
// Get current time for TTL calculations
now := time.Now().Unix()
// Check if we're in a high-latency situation
isHighLatency := false
latencyMetrics := GetAudioLatencyMetrics()
if latencyMetrics != nil && latencyMetrics.LatencyMs > 10.0 {
// Under high latency, be more aggressive with cleanup
isHighLatency = true
}
goroutineCacheMutex.Lock()
defer goroutineCacheMutex.Unlock()
// Convert old cache format to new TTL-based format if needed
if len(goroutineCacheWithTTL) == 0 && len(goroutineBufferCache) > 0 {
for gid, cache := range goroutineBufferCache {
goroutineCacheWithTTL[gid] = &cacheEntry{
cache: cache,
lastAccess: now,
gid: gid,
}
}
// Clear old cache to free memory
goroutineBufferCache = make(map[int64]*lockFreeBufferCache)
}
// Enhanced cleanup with size limits and better TTL management
entriesToRemove := make([]int64, 0)
ttl := Config.BufferPoolBufferTTL
if isHighLatency {
// Under high latency, use a much shorter TTL
ttl = Config.BufferPoolBufferTTL / 4
}
// Remove entries older than enhanced TTL
for gid, entry := range goroutineCacheWithTTL {
// Both now and entry.lastAccess are int64, so this comparison is safe
if now-entry.lastAccess > ttl {
entriesToRemove = append(entriesToRemove, gid)
}
}
// If we have too many cache entries, remove the oldest ones
if len(goroutineCacheWithTTL) > Config.BufferPoolMaxCacheEntries {
// Sort by last access time and remove oldest entries
type cacheEntryWithGID struct {
gid int64
lastAccess int64
}
entries := make([]cacheEntryWithGID, 0, len(goroutineCacheWithTTL))
for gid, entry := range goroutineCacheWithTTL {
entries = append(entries, cacheEntryWithGID{gid: gid, lastAccess: entry.lastAccess})
}
// Sort by last access time (oldest first)
sort.Slice(entries, func(i, j int) bool {
return entries[i].lastAccess < entries[j].lastAccess
})
// Mark oldest entries for removal
excessCount := len(goroutineCacheWithTTL) - Config.BufferPoolMaxCacheEntries
for i := 0; i < excessCount && i < len(entries); i++ {
entriesToRemove = append(entriesToRemove, entries[i].gid)
}
}
// If cache is still too large after TTL cleanup, remove oldest entries
// Under high latency, use a more aggressive target size
targetSize := Config.BufferPoolMaxCacheSize
targetReduction := Config.BufferPoolMaxCacheSize / 2
if isHighLatency {
// Under high latency, target a much smaller cache size
targetSize = Config.BufferPoolMaxCacheSize / 4
targetReduction = Config.BufferPoolMaxCacheSize / 8
}
if len(goroutineCacheWithTTL) > targetSize {
// Find oldest entries
type ageEntry struct {
gid int64
lastAccess int64
}
oldestEntries := make([]ageEntry, 0, len(goroutineCacheWithTTL))
for gid, entry := range goroutineCacheWithTTL {
oldestEntries = append(oldestEntries, ageEntry{gid, entry.lastAccess})
}
// Sort by lastAccess (oldest first)
sort.Slice(oldestEntries, func(i, j int) bool {
return oldestEntries[i].lastAccess < oldestEntries[j].lastAccess
})
// Remove oldest entries to get down to target reduction size
toRemove := len(goroutineCacheWithTTL) - targetReduction
for i := 0; i < toRemove && i < len(oldestEntries); i++ {
entriesToRemove = append(entriesToRemove, oldestEntries[i].gid)
}
}
// Remove marked entries and return their buffers to the pool
for _, gid := range entriesToRemove {
if entry, exists := goroutineCacheWithTTL[gid]; exists {
// Return buffers to main pool before removing entry
for i, buf := range entry.cache.buffers {
if buf != nil {
// Clear the buffer slot atomically
entry.cache.buffers[i] = nil
}
}
delete(goroutineCacheWithTTL, gid)
}
}
}
// AudioBufferPool provides a simple buffer pool for audio processing
type AudioBufferPool struct {
// Atomic fields MUST be first for ARM32 alignment (int64 fields need 8-byte alignment)
currentSize int64 // Current pool size (atomic)
hitCount int64 // Pool hit counter (atomic)
missCount int64 // Pool miss counter (atomic)
// Atomic counters
hitCount int64 // Pool hit counter (atomic)
missCount int64 // Pool miss counter (atomic)
// Other fields
pool sync.Pool
bufferSize int
maxPoolSize int
mutex sync.RWMutex
// Memory optimization fields
preallocated []*[]byte // Pre-allocated buffers for immediate use
preallocSize int // Number of pre-allocated buffers
// Chunk-based allocation optimization
chunkSize int // Size of each memory chunk
chunks [][]byte // Pre-allocated memory chunks
chunkOffsets []int // Current offset in each chunk
chunkMutex sync.Mutex // Protects chunk allocation
// Pool configuration
bufferSize int
pool chan []byte
maxSize int
}
// NewAudioBufferPool creates a new simple audio buffer pool
func NewAudioBufferPool(bufferSize int) *AudioBufferPool {
// Validate buffer size parameter
if err := ValidateBufferSize(bufferSize); err != nil {
// Use default value on validation error
bufferSize = Config.AudioFramePoolSize
maxSize := Config.MaxPoolSize
if maxSize <= 0 {
maxSize = Config.BufferPoolDefaultSize
}
// Enhanced preallocation strategy based on buffer size and system capacity
var preallocSize int
if bufferSize <= Config.AudioFramePoolSize {
// For smaller pools, use enhanced preallocation
preallocSize = Config.PreallocPercentage * 2
} else {
// For larger pools, use standard enhanced preallocation
preallocSize = (Config.PreallocPercentage * 3) / 2
pool := &AudioBufferPool{
bufferSize: bufferSize,
pool: make(chan []byte, maxSize),
maxSize: maxSize,
}
// Ensure minimum preallocation for better performance
if preallocSize < Config.BufferPoolMinPreallocBuffers {
preallocSize = Config.BufferPoolMinPreallocBuffers
}
// Calculate max pool size based on buffer size to prevent memory bloat
maxPoolSize := Config.BufferPoolMaxPoolSize // Default
if bufferSize > 8192 {
maxPoolSize = Config.BufferPoolMaxPoolSize / 4 // Much smaller for very large buffers
} else if bufferSize > 4096 {
maxPoolSize = Config.BufferPoolMaxPoolSize / 2 // Smaller for large buffers
} else if bufferSize > 1024 {
maxPoolSize = (Config.BufferPoolMaxPoolSize * 3) / 4 // Medium for medium buffers
}
// Calculate chunk size - allocate larger chunks to reduce allocation frequency
chunkSize := bufferSize * Config.BufferPoolChunkBufferCount // Each chunk holds multiple buffers worth of memory
if chunkSize < Config.BufferPoolMinChunkSize {
chunkSize = Config.BufferPoolMinChunkSize // Minimum chunk size
}
p := &AudioBufferPool{
bufferSize: bufferSize,
maxPoolSize: maxPoolSize,
preallocated: make([]*[]byte, 0, preallocSize),
preallocSize: preallocSize,
chunkSize: chunkSize,
chunks: make([][]byte, 0, Config.BufferPoolInitialChunkCapacity), // Start with capacity for initial chunks
chunkOffsets: make([]int, 0, Config.BufferPoolInitialChunkCapacity),
}
// Configure sync.Pool with optimized allocation
p.pool.New = func() interface{} {
// Use chunk-based allocation instead of individual make()
buf := p.allocateFromChunk()
return &buf
}
// Pre-allocate buffers with optimized capacity
for i := 0; i < preallocSize; i++ {
// Use chunk-based allocation to prevent over-allocation
buf := p.allocateFromChunk()
p.preallocated = append(p.preallocated, &buf)
}
return p
}
// allocateFromChunk allocates a buffer from pre-allocated memory chunks
func (p *AudioBufferPool) allocateFromChunk() []byte {
p.chunkMutex.Lock()
defer p.chunkMutex.Unlock()
// Try to allocate from existing chunks
for i := 0; i < len(p.chunks); i++ {
if p.chunkOffsets[i]+p.bufferSize <= len(p.chunks[i]) {
// Slice from the chunk
start := p.chunkOffsets[i]
end := start + p.bufferSize
buf := p.chunks[i][start:end:end] // Use 3-index slice to set capacity
p.chunkOffsets[i] = end
return buf[:0] // Return with zero length but correct capacity
// Pre-populate the pool
for i := 0; i < maxSize/2; i++ {
buf := make([]byte, bufferSize)
select {
case pool.pool <- buf:
default:
break
}
}
// Need to allocate a new chunk
newChunk := make([]byte, p.chunkSize)
p.chunks = append(p.chunks, newChunk)
p.chunkOffsets = append(p.chunkOffsets, p.bufferSize)
// Return buffer from the new chunk
buf := newChunk[0:p.bufferSize:p.bufferSize]
return buf[:0] // Return with zero length but correct capacity
return pool
}
// Get retrieves a buffer from the pool
func (p *AudioBufferPool) Get() []byte {
// Skip cleanup trigger in hotpath - cleanup runs in background
// cleanupGoroutineCache() - moved to background goroutine
// Fast path: Try lock-free per-goroutine cache first
gid := getGoroutineID()
goroutineCacheMutex.RLock()
cacheEntry, exists := goroutineCacheWithTTL[gid]
goroutineCacheMutex.RUnlock()
if exists && cacheEntry != nil && cacheEntry.cache != nil {
// Try to get buffer from lock-free cache
cache := cacheEntry.cache
for i := 0; i < len(cache.buffers); i++ {
bufPtr := (*unsafe.Pointer)(unsafe.Pointer(&cache.buffers[i]))
buf := (*[]byte)(atomic.LoadPointer(bufPtr))
if buf != nil && atomic.CompareAndSwapPointer(bufPtr, unsafe.Pointer(buf), nil) {
// Direct hit count update to avoid sampling complexity in critical path
atomic.AddInt64(&p.hitCount, 1)
*buf = (*buf)[:0]
return *buf
}
}
// Update access time only after cache miss to reduce overhead
cacheEntry.lastAccess = time.Now().Unix()
}
// Fallback: Try pre-allocated pool with mutex
p.mutex.Lock()
if len(p.preallocated) > 0 {
lastIdx := len(p.preallocated) - 1
buf := p.preallocated[lastIdx]
p.preallocated = p.preallocated[:lastIdx]
p.mutex.Unlock()
// Direct hit count update to avoid sampling complexity in critical path
select {
case buf := <-p.pool:
atomic.AddInt64(&p.hitCount, 1)
*buf = (*buf)[:0]
return *buf
return buf[:0] // Reset length but keep capacity
default:
atomic.AddInt64(&p.missCount, 1)
return make([]byte, 0, p.bufferSize)
}
p.mutex.Unlock()
// Try sync.Pool next
if poolBuf := p.pool.Get(); poolBuf != nil {
buf := poolBuf.(*[]byte)
// Direct hit count update to avoid sampling complexity in critical path
atomic.AddInt64(&p.hitCount, 1)
atomic.AddInt64(&p.currentSize, -1)
// Fast capacity check - most buffers should be correct size
if cap(*buf) >= p.bufferSize {
*buf = (*buf)[:0]
return *buf
}
// Buffer too small, fall through to allocation
}
// Pool miss - allocate new buffer from chunk
// Direct miss count update to avoid sampling complexity in critical path
atomic.AddInt64(&p.missCount, 1)
return p.allocateFromChunk()
}
// Put returns a buffer to the pool
func (p *AudioBufferPool) Put(buf []byte) {
// Fast validation - reject buffers that are too small or too large
bufCap := cap(buf)
if bufCap < p.bufferSize || bufCap > p.bufferSize*2 {
return // Buffer size mismatch, don't pool it to prevent memory bloat
if buf == nil || cap(buf) != p.bufferSize {
return // Invalid buffer
}
// Enhanced buffer clearing - only clear if buffer contains sensitive data
// For audio buffers, we can skip clearing for performance unless needed
// This reduces CPU overhead significantly
var resetBuf []byte
if cap(buf) > p.bufferSize {
// If capacity is larger than expected, create a new properly sized buffer
resetBuf = make([]byte, 0, p.bufferSize)
} else {
// Reset length but keep capacity for reuse efficiency
resetBuf = buf[:0]
// Reset the buffer
buf = buf[:0]
// Try to return to pool
select {
case p.pool <- buf:
// Successfully returned to pool
default:
// Pool is full, discard buffer
}
// Fast path: Try to put in lock-free per-goroutine cache
gid := getGoroutineID()
goroutineCacheMutex.RLock()
entryWithTTL, exists := goroutineCacheWithTTL[gid]
goroutineCacheMutex.RUnlock()
var cache *lockFreeBufferCache
if exists && entryWithTTL != nil {
cache = entryWithTTL.cache
// Update access time only when we successfully use the cache
} else {
// Create new cache for this goroutine
cache = &lockFreeBufferCache{}
now := time.Now().Unix()
goroutineCacheMutex.Lock()
goroutineCacheWithTTL[gid] = &cacheEntry{
cache: cache,
lastAccess: now,
gid: gid,
}
goroutineCacheMutex.Unlock()
}
if cache != nil {
// Try to store in lock-free cache
for i := 0; i < len(cache.buffers); i++ {
bufPtr := (*unsafe.Pointer)(unsafe.Pointer(&cache.buffers[i]))
if atomic.CompareAndSwapPointer(bufPtr, nil, unsafe.Pointer(&resetBuf)) {
// Update access time only on successful cache
if exists && entryWithTTL != nil {
entryWithTTL.lastAccess = time.Now().Unix()
}
return // Successfully cached
}
}
}
// Fallback: Try to return to pre-allocated pool for fastest reuse
p.mutex.Lock()
if len(p.preallocated) < p.preallocSize {
p.preallocated = append(p.preallocated, &resetBuf)
p.mutex.Unlock()
return
}
p.mutex.Unlock()
// Check sync.Pool size limit to prevent excessive memory usage
if atomic.LoadInt64(&p.currentSize) >= int64(p.maxPoolSize) {
return // Pool is full, let GC handle this buffer
}
// Return to sync.Pool and update counter atomically
p.pool.Put(&resetBuf)
atomic.AddInt64(&p.currentSize, 1)
}
// Enhanced global buffer pools for different audio frame types with improved sizing
var (
// Main audio frame pool with enhanced capacity
audioFramePool = NewAudioBufferPool(Config.AudioFramePoolSize)
// Control message pool with enhanced capacity for better throughput
audioControlPool = NewAudioBufferPool(Config.BufferPoolControlSize) // Control message buffer size
)
func GetAudioFrameBuffer() []byte {
return audioFramePool.Get()
}
func PutAudioFrameBuffer(buf []byte) {
audioFramePool.Put(buf)
}
func GetAudioControlBuffer() []byte {
return audioControlPool.Get()
}
func PutAudioControlBuffer(buf []byte) {
audioControlPool.Put(buf)
}
// GetPoolStats returns detailed statistics about this buffer pool
func (p *AudioBufferPool) GetPoolStats() AudioBufferPoolDetailedStats {
p.mutex.RLock()
preallocatedCount := len(p.preallocated)
currentSize := p.currentSize
p.mutex.RUnlock()
// GetStats returns pool statistics
func (p *AudioBufferPool) GetStats() AudioBufferPoolStats {
hitCount := atomic.LoadInt64(&p.hitCount)
missCount := atomic.LoadInt64(&p.missCount)
totalRequests := hitCount + missCount
var hitRate float64
if totalRequests > 0 {
hitRate = float64(hitCount) / float64(totalRequests) * Config.PercentageMultiplier
hitRate = float64(hitCount) / float64(totalRequests) * Config.BufferPoolHitRateBase
}
return AudioBufferPoolDetailedStats{
BufferSize: p.bufferSize,
MaxPoolSize: p.maxPoolSize,
CurrentPoolSize: currentSize,
PreallocatedCount: int64(preallocatedCount),
PreallocatedMax: int64(p.preallocSize),
HitCount: hitCount,
MissCount: missCount,
HitRate: hitRate,
}
}
// AudioBufferPoolDetailedStats provides detailed pool statistics
type AudioBufferPoolDetailedStats struct {
BufferSize int
MaxPoolSize int
CurrentPoolSize int64
PreallocatedCount int64
PreallocatedMax int64
HitCount int64
MissCount int64
HitRate float64 // Percentage
TotalBytes int64 // Total memory usage in bytes
AverageBufferSize float64 // Average size of buffers in the pool
}
// GetAudioBufferPoolStats returns statistics about the audio buffer pools
type AudioBufferPoolStats struct {
FramePoolSize int64
FramePoolMax int
ControlPoolSize int64
ControlPoolMax int
// Enhanced statistics
FramePoolHitRate float64
ControlPoolHitRate float64
FramePoolDetails AudioBufferPoolDetailedStats
ControlPoolDetails AudioBufferPoolDetailedStats
}
func GetAudioBufferPoolStats() AudioBufferPoolStats {
audioFramePool.mutex.RLock()
frameSize := audioFramePool.currentSize
frameMax := audioFramePool.maxPoolSize
audioFramePool.mutex.RUnlock()
audioControlPool.mutex.RLock()
controlSize := audioControlPool.currentSize
controlMax := audioControlPool.maxPoolSize
audioControlPool.mutex.RUnlock()
// Get detailed statistics
frameDetails := audioFramePool.GetPoolStats()
controlDetails := audioControlPool.GetPoolStats()
return AudioBufferPoolStats{
FramePoolSize: frameSize,
FramePoolMax: frameMax,
ControlPoolSize: controlSize,
ControlPoolMax: controlMax,
FramePoolHitRate: frameDetails.HitRate,
ControlPoolHitRate: controlDetails.HitRate,
FramePoolDetails: frameDetails,
ControlPoolDetails: controlDetails,
BufferSize: p.bufferSize,
MaxPoolSize: p.maxSize,
CurrentSize: int64(len(p.pool)),
HitCount: hitCount,
MissCount: missCount,
HitRate: hitRate,
}
}
// AdaptiveResize dynamically adjusts pool parameters based on performance metrics
func (p *AudioBufferPool) AdaptiveResize() {
hitCount := atomic.LoadInt64(&p.hitCount)
missCount := atomic.LoadInt64(&p.missCount)
totalRequests := hitCount + missCount
if totalRequests < int64(Config.BufferPoolAdaptiveResizeThreshold) {
return // Not enough data for meaningful adaptation
}
hitRate := float64(hitCount) / float64(totalRequests)
currentSize := atomic.LoadInt64(&p.currentSize)
// If hit rate is low, consider increasing pool size
if hitRate < Config.BufferPoolCacheHitRateTarget && currentSize < int64(p.maxPoolSize) {
// Increase preallocation by 25% up to max pool size
newPreallocSize := int(float64(len(p.preallocated)) * 1.25)
if newPreallocSize > p.maxPoolSize {
newPreallocSize = p.maxPoolSize
}
// Preallocate additional buffers
for len(p.preallocated) < newPreallocSize {
buf := make([]byte, p.bufferSize)
p.preallocated = append(p.preallocated, &buf)
}
}
// If hit rate is very high and pool is large, consider shrinking
if hitRate > Config.BufferPoolHighHitRateThreshold && len(p.preallocated) > p.preallocSize {
// Reduce preallocation by 10% but not below original size
newSize := int(float64(len(p.preallocated)) * 0.9)
if newSize < p.preallocSize {
newSize = p.preallocSize
}
// Remove excess preallocated buffers
if newSize < len(p.preallocated) {
p.preallocated = p.preallocated[:newSize]
}
}
// AudioBufferPoolStats represents pool statistics
type AudioBufferPoolStats struct {
BufferSize int
MaxPoolSize int
CurrentSize int64
HitCount int64
MissCount int64
HitRate float64
}
// WarmupCache pre-populates goroutine-local caches for better initial performance
func (p *AudioBufferPool) WarmupCache() {
// Only warmup if we have sufficient request history
hitCount := atomic.LoadInt64(&p.hitCount)
missCount := atomic.LoadInt64(&p.missCount)
totalRequests := hitCount + missCount
// Global buffer pools
var (
audioFramePool = NewAudioBufferPool(Config.AudioFramePoolSize)
audioControlPool = NewAudioBufferPool(Config.BufferPoolControlSize)
)
if totalRequests < int64(Config.BufferPoolCacheWarmupThreshold) {
return
}
// Get or create cache for current goroutine
gid := getGoroutineID()
goroutineCacheMutex.RLock()
entryWithTTL, exists := goroutineCacheWithTTL[gid]
goroutineCacheMutex.RUnlock()
var cache *lockFreeBufferCache
if exists && entryWithTTL != nil {
cache = entryWithTTL.cache
} else {
// Create new cache for this goroutine
cache = &lockFreeBufferCache{}
now := time.Now().Unix()
goroutineCacheMutex.Lock()
goroutineCacheWithTTL[gid] = &cacheEntry{
cache: cache,
lastAccess: now,
gid: gid,
}
goroutineCacheMutex.Unlock()
}
if cache != nil {
// Fill cache to optimal level based on hit rate
hitRate := float64(hitCount) / float64(totalRequests)
optimalCacheSize := int(float64(Config.BufferPoolCacheSize) * hitRate)
if optimalCacheSize < 2 {
optimalCacheSize = 2
}
// Pre-allocate buffers for cache
for i := 0; i < optimalCacheSize && i < len(cache.buffers); i++ {
if cache.buffers[i] == nil {
// Get buffer from main pool
buf := p.Get()
if len(buf) > 0 {
cache.buffers[i] = &buf
}
}
}
}
// GetAudioFrameBuffer gets a buffer for audio frames
func GetAudioFrameBuffer() []byte {
return audioFramePool.Get()
}
// OptimizeCache performs periodic cache optimization based on usage patterns
func (p *AudioBufferPool) OptimizeCache() {
hitCount := atomic.LoadInt64(&p.hitCount)
missCount := atomic.LoadInt64(&p.missCount)
totalRequests := hitCount + missCount
// PutAudioFrameBuffer returns a buffer to the frame pool
func PutAudioFrameBuffer(buf []byte) {
audioFramePool.Put(buf)
}
if totalRequests < int64(Config.BufferPoolOptimizeCacheThreshold) {
return
}
// GetAudioControlBuffer gets a buffer for control messages
func GetAudioControlBuffer() []byte {
return audioControlPool.Get()
}
hitRate := float64(hitCount) / float64(totalRequests)
// PutAudioControlBuffer returns a buffer to the control pool
func PutAudioControlBuffer(buf []byte) {
audioControlPool.Put(buf)
}
// If hit rate is below target, trigger cache warmup
if hitRate < Config.BufferPoolCacheHitRateTarget {
p.WarmupCache()
}
// Reset counters periodically to avoid overflow and get fresh metrics
if totalRequests > int64(Config.BufferPoolCounterResetThreshold) {
atomic.StoreInt64(&p.hitCount, hitCount/2)
atomic.StoreInt64(&p.missCount, missCount/2)
// GetAudioBufferPoolStats returns statistics for all pools
func GetAudioBufferPoolStats() map[string]AudioBufferPoolStats {
return map[string]AudioBufferPoolStats{
"frame_pool": audioFramePool.GetStats(),
"control_pool": audioControlPool.GetStats(),
}
}

View File

@ -98,7 +98,7 @@ type ZeroCopyFramePool struct {
// NewZeroCopyFramePool creates a new zero-copy frame pool
func NewZeroCopyFramePool(maxFrameSize int) *ZeroCopyFramePool {
// Pre-allocate frames for immediate availability
preallocSizeBytes := Config.PreallocSize
preallocSizeBytes := Config.ZeroCopyPreallocSizeBytes
maxPoolSize := Config.MaxPoolSize // Limit total pool size
// Calculate number of frames based on memory budget, not frame count
@ -106,8 +106,8 @@ func NewZeroCopyFramePool(maxFrameSize int) *ZeroCopyFramePool {
if preallocFrameCount > maxPoolSize {
preallocFrameCount = maxPoolSize
}
if preallocFrameCount < 1 {
preallocFrameCount = 1 // Always preallocate at least one frame
if preallocFrameCount < Config.ZeroCopyMinPreallocFrames {
preallocFrameCount = Config.ZeroCopyMinPreallocFrames
}
preallocated := make([]*ZeroCopyAudioFrame, 0, preallocFrameCount)

View File

@ -35,9 +35,6 @@ func startAudioSubprocess() error {
// Initialize validation cache for optimal performance
audio.InitValidationCache()
// Start goroutine monitoring to detect and prevent leaks
audio.StartGoroutineMonitoring()
// Enable batch audio processing to reduce CGO call overhead
if err := audio.EnableBatchAudioProcessing(); err != nil {
logger.Warn().Err(err).Msg("failed to enable batch audio processing")
@ -112,8 +109,6 @@ func startAudioSubprocess() error {
// Stop audio relay when process exits
audio.StopAudioRelay()
// Stop goroutine monitoring
audio.StopGoroutineMonitoring()
// Disable batch audio processing
audio.DisableBatchAudioProcessing()
},