MMDVM/FM.cpp

1233 lines
31 KiB
C++

/*
* Copyright (C) 2020,2021,2025 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "Config.h"
#if defined(MODE_FM)
#include "Globals.h"
#include "FM.h"
const uint16_t FM_TX_BLOCK_SIZE = 100U;
const uint16_t FM_SERIAL_BLOCK_SIZE = 80U;//this is the number of sample pairs to send over serial. One sample pair is 3bytes.
//three times this value shall never exceed 252
const uint16_t FM_SERIAL_BLOCK_SIZE_BYTES = FM_SERIAL_BLOCK_SIZE * 3U;
CFM::CFM() :
m_callsign(),
m_rfAck(),
m_extAck(),
m_ctcssRX(),
m_ctcssTX(),
m_squelch(),
m_timeoutTone(),
m_state(FS_LISTENING),
m_callsignAtStart(false),
m_callsignAtEnd(false),
m_callsignAtLatch(false),
m_callsignTimer(),
m_timeoutTimer(),
m_holdoffTimer(),
m_kerchunkTimer(),
m_ackMinTimer(),
m_ackDelayTimer(),
m_hangTimer(),
m_statusTimer(),
m_reverseTimer(),
m_needReverse(false),
m_filterStage1( 724, 1448, 724, 32768, -37895, 21352),//3rd order Cheby Filter 300 to 2700Hz, 0.2dB passband ripple, sampling rate 24kHz
m_filterStage2(32768, 0,-32768, 32768, -50339, 19052),
m_filterStage3(32768, -65536, 32768, 32768, -64075, 31460),
m_blanking(),
m_accessMode(1U),
m_linkMode(false),
m_cosInvert(false),
m_noiseSquelch(false),
m_rfAudioBoost(1U),
m_extAudioBoost(1U),
m_downSampler(400U),// 100 ms of audio
m_extEnabled(false),
m_rxLevel(1),
m_inputRFRB(2401U), // 100ms of audio + 1 sample
m_outputRFRB(2400U), // 100ms of audio
m_inputExtRB(),
m_rfSignal(false),
m_extSignal(false)
{
m_statusTimer.setTimeout(1U, 0U);
m_reverseTimer.setTimeout(0U, 150U);
insertDelay(100U);
}
void CFM::samples(bool cos, q15_t* samples, uint8_t length)
{
if (m_linkMode)
linkSamples(cos, samples, length);
else
repeaterSamples(cos, samples, length);
}
void CFM::repeaterSamples(bool cos, q15_t* samples, uint8_t length)
{
if (m_cosInvert)
cos = !cos;
clock(length);
uint8_t i = 0U;
for (; i < length; i++) {
// ARMv7-M has hardware integer division
q15_t currentRFSample = q15_t((q31_t(samples[i]) << 8) / m_rxLevel);
if (m_noiseSquelch)
cos = m_squelch.process(currentRFSample);
q15_t currentExtSample;
bool inputExt = m_inputExtRB.getSample(currentExtSample);//always consume the external input data so it does not overflow
inputExt = inputExt && m_extEnabled;
switch (m_accessMode) {
case 0U:
if (!inputExt && !cos && m_modemState != STATE_FM)
continue;
else
stateMachine(cos, inputExt);
break;
case 1U: {
bool ctcss = m_ctcssRX.process(currentRFSample);
// Delay the audio by 100ms to better match the CTCSS detector output
m_inputRFRB.put(currentRFSample);
m_inputRFRB.get(currentRFSample);
if (!inputExt && !ctcss && m_modemState != STATE_FM) {
// No CTCSS detected, just carry on
continue;
} else if ((inputExt || ctcss) && m_modemState != STATE_FM) {
// We had CTCSS or external input
stateMachine(ctcss, inputExt);
if (m_state == FS_LISTENING)
continue;
} else {
stateMachine(ctcss, inputExt);
}
}
break;
case 2U: {
bool ctcss = m_ctcssRX.process(currentRFSample);
if (!inputExt && !ctcss && m_modemState != STATE_FM) {
// No CTCSS detected, just carry on
continue;
} else if ((inputExt || (ctcss && cos)) && m_modemState != STATE_FM) {
// We had CTCSS or external input
stateMachine(ctcss && cos, inputExt);
if (m_state == FS_LISTENING)
continue;
} else {
stateMachine(ctcss && cos, inputExt);
}
}
break;
default: {
bool ctcss = m_ctcssRX.process(currentRFSample);
if (!inputExt && !ctcss && m_modemState != STATE_FM) {
// No CTCSS detected, just carry on
continue;
} else if ((inputExt || (ctcss && cos)) && m_modemState != STATE_FM) {
// We had CTCSS or external input
stateMachine(ctcss && cos, inputExt);
if (m_state == FS_LISTENING)
continue;
} else {
stateMachine(cos, inputExt);
}
}
break;
}
if (m_modemState != STATE_FM)
continue;
if (m_state == FS_LISTENING && !m_rfAck.isWanted() && !m_extAck.isWanted() && !m_callsign.isWanted() && !m_reverseTimer.isRunning())
continue;
q15_t currentSample = currentRFSample;
q15_t currentBoost = m_rfAudioBoost;
if (m_state == FS_RELAYING_EXT || m_state == FS_KERCHUNK_EXT) {
currentSample = currentExtSample;
currentBoost = m_extAudioBoost;
}
// Only let RF audio through when relaying RF audio
if (m_duplex) {
if (m_state == FS_RELAYING_RF || m_state == FS_KERCHUNK_RF || m_state == FS_RELAYING_EXT || m_state == FS_KERCHUNK_EXT) {
currentSample = m_blanking.process(currentSample);
if (m_extEnabled && (m_state == FS_RELAYING_RF || m_state == FS_KERCHUNK_RF))
m_downSampler.addSample(currentSample);
currentSample *= currentBoost;
} else {
currentSample = 0;
}
} else {
if (m_state == FS_RELAYING_EXT || m_state == FS_KERCHUNK_EXT) {
currentSample *= currentBoost;
} else {
if (m_extEnabled && (m_state == FS_RELAYING_RF || m_state == FS_KERCHUNK_RF))
m_downSampler.addSample(currentSample);
continue;
}
}
if (!m_callsign.isRunning() && !m_extAck.isRunning())
currentSample += m_rfAck.getHighAudio();
if (!m_callsign.isRunning() && !m_rfAck.isRunning())
currentSample += m_extAck.getHighAudio();
if (!m_rfAck.isRunning() && !m_extAck.isRunning()) {
if (m_state == FS_LISTENING)
currentSample += m_callsign.getHighAudio();
else
currentSample += m_callsign.getLowAudio();
}
currentSample = m_filterStage3.filter(m_filterStage2.filter(m_filterStage1.filter(currentSample)));
if (!m_callsign.isRunning() && !m_rfAck.isRunning() && !m_extAck.isRunning())
currentSample += m_timeoutTone.getAudio();
currentSample += m_ctcssTX.getAudio(m_reverseTimer.isRunning());
m_outputRFRB.put(currentSample);
}
}
void CFM::linkSamples(bool cos, q15_t* samples, uint8_t length)
{
if (m_cosInvert)
cos = !cos;
clock(length);
uint8_t i = 0U;
for (; i < length; i++) {
// ARMv7-M has hardware integer division
q15_t currentRFSample = q15_t((q31_t(samples[i]) << 8) / m_rxLevel);
if (m_noiseSquelch)
cos = m_squelch.process(currentRFSample);
q15_t currentExtSample;
bool inputExt = m_inputExtRB.getSample(currentExtSample);//always consume the external input data so it does not overflow
inputExt = inputExt && m_extEnabled;
switch (m_accessMode) {
case 0U:
if (!inputExt && !cos && m_modemState != STATE_FM)
continue;
else
stateMachine(cos, inputExt);
break;
case 1U: {
bool ctcss = m_ctcssRX.process(currentRFSample);
// Delay the audio by 100ms to better match the CTCSS detector output
m_inputRFRB.put(currentRFSample);
m_inputRFRB.get(currentRFSample);
if (!inputExt && !ctcss && m_modemState != STATE_FM) {
// No CTCSS detected, just carry on
continue;
} else if ((inputExt || ctcss) && m_modemState != STATE_FM) {
// We had CTCSS or external input
stateMachine(ctcss, inputExt);
if (m_state == FS_LISTENING)
continue;
} else {
stateMachine(ctcss, inputExt);
}
}
break;
case 2U: {
bool ctcss = m_ctcssRX.process(currentRFSample);
if (!inputExt && !ctcss && m_modemState != STATE_FM) {
// No CTCSS detected, just carry on
continue;
} else if ((inputExt || (ctcss && cos)) && m_modemState != STATE_FM) {
// We had CTCSS or external input
stateMachine(ctcss && cos, inputExt);
if (m_state == FS_LISTENING)
continue;
} else {
stateMachine(ctcss && cos, inputExt);
}
}
break;
default: {
bool ctcss = m_ctcssRX.process(currentRFSample);
if (!inputExt && !ctcss && m_modemState != STATE_FM) {
// No CTCSS detected, just carry on
continue;
} else if ((inputExt || (ctcss && cos)) && m_modemState != STATE_FM) {
// We had CTCSS or external input
stateMachine(ctcss && cos, inputExt);
if (m_state == FS_LISTENING)
continue;
} else {
stateMachine(cos, inputExt);
}
}
break;
}
if (m_modemState != STATE_FM)
continue;
if (m_rfSignal && m_extEnabled) {
q15_t currentSample = m_blanking.process(currentRFSample);
m_downSampler.addSample(currentSample);
}
if (!m_extSignal)
continue;
q15_t currentSample = currentExtSample * m_extAudioBoost;
currentSample = m_filterStage3.filter(m_filterStage2.filter(m_filterStage1.filter(currentSample)));
currentSample += m_ctcssTX.getAudio(m_reverseTimer.isRunning());
m_outputRFRB.put(currentSample);
}
}
void CFM::process()
{
uint16_t space = io.getSpace();
uint16_t length = m_outputRFRB.getData();
if (space > 10U && length >= FM_TX_BLOCK_SIZE ) {
space -= 2U;
if (length > FM_TX_BLOCK_SIZE)
length = FM_TX_BLOCK_SIZE;
if (space > FM_TX_BLOCK_SIZE)
space = FM_TX_BLOCK_SIZE;
if (length > space)
length = space;
q15_t samples[FM_TX_BLOCK_SIZE];
for (uint16_t i = 0U; i < length; i++) {
q15_t sample = 0;
m_outputRFRB.get(sample);
samples[i] = sample;
}
io.write(STATE_FM, samples, length);
}
if (m_extEnabled) {
uint16_t length = m_downSampler.getData();
if (length >= FM_SERIAL_BLOCK_SIZE) {
if (length > FM_SERIAL_BLOCK_SIZE)
length = FM_SERIAL_BLOCK_SIZE;
TSamplePairPack serialSamples[FM_SERIAL_BLOCK_SIZE];
for (uint16_t j = 0U; j < length; j++)
m_downSampler.getPackedData(serialSamples[j]);
serial.writeFMData((uint8_t*)serialSamples, length * sizeof(TSamplePairPack));
}
}
}
void CFM::reset()
{
m_state = FS_LISTENING;
m_callsignTimer.stop();
m_timeoutTimer.stop();
m_kerchunkTimer.stop();
m_ackMinTimer.stop();
m_ackDelayTimer.stop();
m_hangTimer.stop();
m_statusTimer.stop();
m_reverseTimer.stop();
m_ctcssRX.reset();
m_rfAck.stop();
m_extAck.stop();
m_callsign.stop();
m_timeoutTone.stop();
m_outputRFRB.reset();
m_inputExtRB.reset();
m_downSampler.reset();
m_squelch.reset();
m_needReverse = false;
m_rfSignal = false;
m_extSignal = false;
}
uint8_t CFM::setCallsign(const char* callsign, uint8_t speed, uint16_t frequency, uint8_t time, uint8_t holdoff, uint8_t highLevel, uint8_t lowLevel, bool callsignAtStart, bool callsignAtEnd, bool callsignAtLatch)
{
m_callsignAtStart = callsignAtStart;
m_callsignAtEnd = callsignAtEnd;
m_callsignAtLatch = callsignAtLatch;
uint16_t holdoffTime = holdoff * 60U;
uint16_t callsignTime = time * 60U;
m_holdoffTimer.setTimeout(holdoffTime, 0U);
m_callsignTimer.setTimeout(callsignTime, 0U);
if (holdoffTime > 0U)
m_holdoffTimer.start();
return m_callsign.setParams(callsign, speed, frequency, highLevel, lowLevel);
}
uint8_t CFM::setAck(const char* rfAck, uint8_t speed, uint16_t frequency, uint8_t minTime, uint16_t delay, uint8_t level)
{
m_ackDelayTimer.setTimeout(0U, delay);
if (minTime > 0U)
m_ackMinTimer.setTimeout(minTime, delay);
return m_rfAck.setParams(rfAck, speed, frequency, level, level);
}
uint8_t CFM::setMisc(uint16_t timeout, uint8_t timeoutLevel, uint8_t ctcssFrequency, uint8_t ctcssHighThreshold, uint8_t ctcssLowThreshold, uint8_t ctcssLevel, uint8_t kerchunkTime, uint8_t hangTime, uint8_t accessMode, bool linkMode, bool cosInvert, bool noiseSquelch, uint8_t squelchHighThreshold, uint8_t squelchLowThreshold, uint8_t rfAudioBoost, uint8_t maxDev, uint8_t rxLevel)
{
m_accessMode = accessMode;
m_linkMode = linkMode;
m_cosInvert = cosInvert;
m_noiseSquelch = noiseSquelch;
m_rfAudioBoost = q15_t(rfAudioBoost);
m_timeoutTimer.setTimeout(timeout, 0U);
m_kerchunkTimer.setTimeout(kerchunkTime, 0U);
m_hangTimer.setTimeout(hangTime, 0U);
m_timeoutTone.setParams(timeoutLevel);
m_blanking.setParams(maxDev, timeoutLevel);
m_rxLevel = rxLevel; //q15_t(255)/q15_t(rxLevel >> 1);
m_squelch.setParams(squelchHighThreshold, squelchLowThreshold);
uint8_t ret = m_ctcssRX.setParams(ctcssFrequency, ctcssHighThreshold, ctcssLowThreshold);
if (ret != 0U)
return ret;
return m_ctcssTX.setParams(ctcssFrequency, ctcssLevel);
}
uint8_t CFM::setExt(const char* ack, uint8_t audioBoost, uint8_t speed, uint16_t frequency, uint8_t level)
{
m_extEnabled = true;
m_extAudioBoost = q15_t(audioBoost);
return m_extAck.setParams(ack, speed, frequency, level, level);
}
void CFM::stateMachine(bool validRFSignal, bool validExtSignal)
{
if (m_linkMode) {
linkStateMachine(validRFSignal, validExtSignal);
} else {
if (m_duplex)
duplexStateMachine(validRFSignal, validExtSignal);
else
simplexStateMachine(validRFSignal, validExtSignal);
}
}
void CFM::simplexStateMachine(bool validRFSignal, bool validExtSignal)
{
switch (m_state) {
case FS_LISTENING:
listeningStateSimplex(validRFSignal, validExtSignal);
break;
case FS_RELAYING_RF:
relayingRFStateSimplex(validRFSignal);
break;
case FS_RELAYING_WAIT_RF:
relayingRFWaitStateSimplex(validRFSignal);
break;
case FS_TIMEOUT_RF:
timeoutRFStateSimplex(validRFSignal);
break;
case FS_TIMEOUT_WAIT_RF:
timeoutRFStateSimplex(validRFSignal);
break;
case FS_RELAYING_EXT:
relayingExtStateSimplex(validExtSignal);
break;
case FS_RELAYING_WAIT_EXT:
relayingExtWaitStateSimplex(validExtSignal);
break;
case FS_TIMEOUT_EXT:
timeoutExtStateSimplex(validExtSignal);
break;
case FS_TIMEOUT_WAIT_EXT:
timeoutExtWaitStateSimplex(validExtSignal);
break;
default:
break;
}
if (m_state == FS_LISTENING) {
if (!m_reverseTimer.isRunning() && m_needReverse)
m_reverseTimer.start();
if (m_reverseTimer.isRunning() && m_reverseTimer.hasExpired()) {
m_reverseTimer.stop();
m_needReverse = false;
}
}
}
void CFM::duplexStateMachine(bool validRFSignal, bool validExtSignal)
{
switch (m_state) {
case FS_LISTENING:
listeningStateDuplex(validRFSignal, validExtSignal);
break;
case FS_KERCHUNK_RF:
kerchunkRFStateDuplex(validRFSignal);
break;
case FS_RELAYING_RF:
relayingRFStateDuplex(validRFSignal);
break;
case FS_RELAYING_WAIT_RF:
relayingRFWaitStateDuplex(validRFSignal);
break;
case FS_TIMEOUT_RF:
timeoutRFStateDuplex(validRFSignal);
break;
case FS_TIMEOUT_WAIT_RF:
timeoutRFWaitStateDuplex(validRFSignal);
break;
case FS_KERCHUNK_EXT:
kerchunkExtStateDuplex(validExtSignal);
break;
case FS_RELAYING_EXT:
relayingExtStateDuplex(validExtSignal);
break;
case FS_RELAYING_WAIT_EXT:
relayingExtWaitStateDuplex(validExtSignal);
break;
case FS_TIMEOUT_EXT:
timeoutExtStateDuplex(validExtSignal);
break;
case FS_TIMEOUT_WAIT_EXT:
timeoutExtWaitStateDuplex(validExtSignal);
break;
case FS_HANG:
hangStateDuplex(validRFSignal, validExtSignal);
break;
default:
break;
}
if (m_state == FS_LISTENING && !m_rfAck.isWanted() && !m_extAck.isWanted() && !m_callsign.isWanted()) {
if (!m_reverseTimer.isRunning() && m_needReverse)
m_reverseTimer.start();
if (m_reverseTimer.isRunning() && m_reverseTimer.hasExpired()) {
m_reverseTimer.stop();
m_needReverse = false;
}
}
}
void CFM::clock(uint8_t length)
{
m_callsignTimer.clock(length);
m_timeoutTimer.clock(length);
m_holdoffTimer.clock(length);
m_kerchunkTimer.clock(length);
m_ackMinTimer.clock(length);
m_ackDelayTimer.clock(length);
m_hangTimer.clock(length);
m_statusTimer.clock(length);
m_reverseTimer.clock(length);
if (m_statusTimer.isRunning() && m_statusTimer.hasExpired()) {
serial.writeFMStatus(m_state);
m_statusTimer.start();
}
}
void CFM::listeningStateDuplex(bool validRFSignal, bool validExtSignal)
{
if (validRFSignal) {
if (m_kerchunkTimer.getTimeout() > 0U) {
DEBUG1("State to KERCHUNK_RF");
m_state = FS_KERCHUNK_RF;
m_kerchunkTimer.start();
if (m_callsignAtStart && !m_callsignAtLatch)
sendCallsign();
} else {
DEBUG1("State to RELAYING_RF");
m_state = FS_RELAYING_RF;
if (m_callsignAtStart)
sendCallsign();
}
if (m_state == FS_RELAYING_RF || m_state == FS_KERCHUNK_RF) {
insertSilence(50U);
beginRelaying();
m_callsignTimer.start();
m_reverseTimer.stop();
io.setDecode(true);
io.setADCDetection(true);
m_statusTimer.start();
serial.writeFMStatus(m_state);
}
} else if (validExtSignal) {
if (m_kerchunkTimer.getTimeout() > 0U) {
DEBUG1("State to KERCHUNK_EXT");
m_state = FS_KERCHUNK_EXT;
m_kerchunkTimer.start();
if (m_callsignAtStart && !m_callsignAtLatch)
sendCallsign();
} else {
DEBUG1("State to RELAYING_EXT");
m_state = FS_RELAYING_EXT;
if (m_callsignAtStart)
sendCallsign();
}
if (m_state == FS_RELAYING_EXT || m_state == FS_KERCHUNK_EXT) {
insertSilence(50U);
beginRelaying();
m_callsignTimer.start();
m_reverseTimer.stop();
m_statusTimer.start();
serial.writeFMStatus(m_state);
}
}
}
void CFM::listeningStateSimplex(bool validRFSignal, bool validExtSignal)
{
if (validRFSignal) {
DEBUG1("State to RELAYING_RF");
m_state = FS_RELAYING_RF;
io.setDecode(true);
io.setADCDetection(true);
m_timeoutTimer.start();
m_reverseTimer.stop();
m_statusTimer.start();
serial.writeFMStatus(m_state);
} else if (validExtSignal) {
DEBUG1("State to RELAYING_EXT");
m_state = FS_RELAYING_EXT;
insertSilence(50U);
m_timeoutTimer.start();
m_reverseTimer.stop();
m_statusTimer.start();
serial.writeFMStatus(m_state);
}
}
void CFM::kerchunkRFStateDuplex(bool validSignal)
{
if (validSignal) {
if (m_kerchunkTimer.hasExpired()) {
DEBUG1("State to RELAYING_RF");
m_state = FS_RELAYING_RF;
m_kerchunkTimer.stop();
if (m_callsignAtStart && m_callsignAtLatch) {
sendCallsign();
m_callsignTimer.start();
}
}
} else {
io.setDecode(false);
io.setADCDetection(false);
DEBUG1("State to LISTENING");
m_state = FS_LISTENING;
m_kerchunkTimer.stop();
m_timeoutTimer.stop();
m_ackMinTimer.stop();
m_callsignTimer.stop();
m_statusTimer.stop();
m_needReverse = true;
if (m_extEnabled)
serial.writeFMEOT();
}
}
void CFM::relayingRFStateDuplex(bool validSignal)
{
if (validSignal) {
if (m_timeoutTimer.isRunning() && m_timeoutTimer.hasExpired()) {
DEBUG1("State to TIMEOUT_RF");
m_state = FS_TIMEOUT_RF;
m_ackMinTimer.stop();
m_timeoutTimer.stop();
m_timeoutTone.start();
if (m_extEnabled)
serial.writeFMEOT();
}
} else {
io.setDecode(false);
io.setADCDetection(false);
DEBUG1("State to RELAYING_WAIT_RF");
m_state = FS_RELAYING_WAIT_RF;
m_ackDelayTimer.start();
if (m_extEnabled)
serial.writeFMEOT();
}
if (m_callsignTimer.isRunning() && m_callsignTimer.hasExpired()) {
sendCallsign();
m_callsignTimer.start();
}
}
void CFM::relayingRFStateSimplex(bool validSignal)
{
if (validSignal) {
if (m_timeoutTimer.isRunning() && m_timeoutTimer.hasExpired()) {
DEBUG1("State to TIMEOUT_RF");
m_state = FS_TIMEOUT_RF;
m_timeoutTimer.stop();
if (m_extEnabled)
serial.writeFMEOT();
}
} else {
io.setDecode(false);
io.setADCDetection(false);
DEBUG1("State to RELAYING_WAIT_RF");
m_state = FS_RELAYING_WAIT_RF;
m_ackDelayTimer.start();
if (m_extEnabled)
serial.writeFMEOT();
}
}
void CFM::relayingRFWaitStateDuplex(bool validSignal)
{
if (validSignal) {
io.setDecode(true);
io.setADCDetection(true);
DEBUG1("State to RELAYING_RF");
m_state = FS_RELAYING_RF;
m_ackDelayTimer.stop();
} else {
if (m_ackDelayTimer.isRunning() && m_ackDelayTimer.hasExpired()) {
DEBUG1("State to HANG");
m_state = FS_HANG;
if (m_ackMinTimer.isRunning()) {
if (m_ackMinTimer.hasExpired()) {
DEBUG1("Send RF ack");
m_rfAck.start();
m_ackMinTimer.stop();
}
} else {
DEBUG1("Send RF ack");
m_rfAck.start();
m_ackMinTimer.stop();
}
m_ackDelayTimer.stop();
m_timeoutTimer.stop();
m_hangTimer.start();
}
}
if (m_callsignTimer.isRunning() && m_callsignTimer.hasExpired()) {
sendCallsign();
m_callsignTimer.start();
}
}
void CFM::relayingRFWaitStateSimplex(bool validSignal)
{
if (validSignal) {
io.setDecode(true);
io.setADCDetection(true);
DEBUG1("State to RELAYING_RF");
m_state = FS_RELAYING_RF;
m_ackDelayTimer.stop();
} else {
if (m_ackDelayTimer.isRunning() && m_ackDelayTimer.hasExpired()) {
DEBUG1("State to LISTENING");
m_state = FS_LISTENING;
m_ackDelayTimer.stop();
m_timeoutTimer.stop();
}
}
}
void CFM::kerchunkExtStateDuplex(bool validSignal)
{
if (validSignal) {
if (m_kerchunkTimer.hasExpired()) {
DEBUG1("State to RELAYING_EXT");
m_state = FS_RELAYING_EXT;
m_kerchunkTimer.stop();
if (m_callsignAtStart && m_callsignAtLatch) {
sendCallsign();
m_callsignTimer.start();
}
}
} else {
DEBUG1("State to LISTENING");
m_state = FS_LISTENING;
m_kerchunkTimer.stop();
m_timeoutTimer.stop();
m_ackMinTimer.stop();
m_callsignTimer.stop();
m_statusTimer.stop();
m_needReverse = true;
}
}
void CFM::relayingExtStateDuplex(bool validSignal)
{
if (validSignal) {
if (m_timeoutTimer.isRunning() && m_timeoutTimer.hasExpired()) {
DEBUG1("State to TIMEOUT_EXT");
m_state = FS_TIMEOUT_EXT;
m_ackMinTimer.stop();
m_timeoutTimer.stop();
m_timeoutTone.start();
}
} else {
DEBUG1("State to RELAYING_WAIT_EXT");
m_state = FS_RELAYING_WAIT_EXT;
m_ackDelayTimer.start();
}
if (m_callsignTimer.isRunning() && m_callsignTimer.hasExpired()) {
sendCallsign();
m_callsignTimer.start();
}
}
void CFM::relayingExtStateSimplex(bool validSignal)
{
if (validSignal) {
if (m_timeoutTimer.isRunning() && m_timeoutTimer.hasExpired()) {
DEBUG1("State to TIMEOUT_EXT");
m_state = FS_TIMEOUT_EXT;
m_timeoutTimer.stop();
}
} else {
DEBUG1("State to RELAYING_WAIT_EXT");
m_state = FS_RELAYING_WAIT_EXT;
m_ackDelayTimer.start();
}
}
void CFM::relayingExtWaitStateDuplex(bool validSignal)
{
if (validSignal) {
DEBUG1("State to RELAYING_EXT");
m_state = FS_RELAYING_EXT;
m_ackDelayTimer.stop();
} else {
if (m_ackDelayTimer.isRunning() && m_ackDelayTimer.hasExpired()) {
DEBUG1("State to HANG");
m_state = FS_HANG;
if (m_ackMinTimer.isRunning()) {
if (m_ackMinTimer.hasExpired()) {
DEBUG1("Send Ext ack");
m_extAck.start();
m_ackMinTimer.stop();
}
} else {
DEBUG1("Send Ext ack");
m_extAck.start();
m_ackMinTimer.stop();
}
m_ackDelayTimer.stop();
m_timeoutTimer.stop();
m_hangTimer.start();
}
}
if (m_callsignTimer.isRunning() && m_callsignTimer.hasExpired()) {
sendCallsign();
m_callsignTimer.start();
}
}
void CFM::relayingExtWaitStateSimplex(bool validSignal)
{
if (validSignal) {
DEBUG1("State to RELAYING_EXT");
m_state = FS_RELAYING_EXT;
m_ackDelayTimer.stop();
} else {
if (m_ackDelayTimer.isRunning() && m_ackDelayTimer.hasExpired()) {
DEBUG1("State to LISTENING");
m_state = FS_LISTENING;
m_ackDelayTimer.stop();
m_timeoutTimer.stop();
m_needReverse = true;
}
}
}
void CFM::hangStateDuplex(bool validRFSignal, bool validExtSignal)
{
if (validRFSignal) {
io.setDecode(true);
io.setADCDetection(true);
DEBUG1("State to RELAYING_RF");
m_state = FS_RELAYING_RF;
DEBUG1("Stop ack");
m_rfAck.stop();
m_extAck.stop();
beginRelaying();
} else if (validExtSignal) {
DEBUG1("State to RELAYING_EXT");
m_state = FS_RELAYING_EXT;
DEBUG1("Stop ack");
m_rfAck.stop();
m_extAck.stop();
beginRelaying();
} else {
if (m_hangTimer.isRunning() && m_hangTimer.hasExpired()) {
DEBUG1("State to LISTENING");
m_state = FS_LISTENING;
m_hangTimer.stop();
m_statusTimer.stop();
if (m_callsignAtEnd)
sendCallsign();
m_callsignTimer.stop();
m_needReverse = true;
}
}
if (m_callsignTimer.isRunning() && m_callsignTimer.hasExpired()) {
sendCallsign();
m_callsignTimer.start();
}
}
void CFM::timeoutRFStateDuplex(bool validSignal)
{
if (!validSignal) {
io.setDecode(false);
io.setADCDetection(false);
DEBUG1("State to TIMEOUT_WAIT_RF");
m_state = FS_TIMEOUT_WAIT_RF;
if (m_callsignAtEnd)
sendCallsign();
m_ackDelayTimer.start();
}
if (m_callsignTimer.isRunning() && m_callsignTimer.hasExpired()) {
sendCallsign();
m_callsignTimer.start();
}
}
void CFM::timeoutRFStateSimplex(bool validSignal)
{
if (!validSignal) {
io.setDecode(false);
io.setADCDetection(false);
DEBUG1("State to TIMEOUT_WAIT_RF");
m_state = FS_TIMEOUT_WAIT_RF;
m_ackDelayTimer.start();
}
}
void CFM::timeoutRFWaitStateDuplex(bool validSignal)
{
if (validSignal) {
io.setDecode(true);
io.setADCDetection(true);
DEBUG1("State to TIMEOUT_RF");
m_state = FS_TIMEOUT_RF;
m_ackDelayTimer.stop();
} else {
if (m_ackDelayTimer.isRunning() && m_ackDelayTimer.hasExpired()) {
DEBUG1("State to HANG");
m_state = FS_HANG;
m_timeoutTone.stop();
DEBUG1("Send RF ack");
m_rfAck.start();
m_ackDelayTimer.stop();
m_ackMinTimer.stop();
m_timeoutTimer.stop();
m_hangTimer.start();
}
}
if (m_callsignTimer.isRunning() && m_callsignTimer.hasExpired()) {
sendCallsign();
m_callsignTimer.start();
}
}
void CFM::timeoutRFWaitStateSimplex(bool validSignal)
{
if (validSignal) {
io.setDecode(true);
io.setADCDetection(true);
DEBUG1("State to TIMEOUT_RF");
m_state = FS_TIMEOUT_RF;
m_ackDelayTimer.stop();
} else {
if (m_ackDelayTimer.isRunning() && m_ackDelayTimer.hasExpired()) {
DEBUG1("State to LISTENING");
m_state = FS_LISTENING;
m_ackDelayTimer.stop();
m_timeoutTimer.stop();
}
}
}
void CFM::timeoutExtStateDuplex(bool validSignal)
{
if (!validSignal) {
DEBUG1("State to TIMEOUT_WAIT_EXT");
m_state = FS_TIMEOUT_WAIT_EXT;
m_ackDelayTimer.start();
}
if (m_callsignTimer.isRunning() && m_callsignTimer.hasExpired()) {
sendCallsign();
m_callsignTimer.start();
}
}
void CFM::timeoutExtStateSimplex(bool validSignal)
{
if (!validSignal) {
DEBUG1("State to TIMEOUT_WAIT_EXT");
m_state = FS_TIMEOUT_WAIT_EXT;
m_ackDelayTimer.start();
}
}
void CFM::timeoutExtWaitStateDuplex(bool validSignal)
{
if (validSignal) {
DEBUG1("State to TIMEOUT_EXT");
m_state = FS_TIMEOUT_EXT;
m_ackDelayTimer.stop();
} else {
if (m_ackDelayTimer.isRunning() && m_ackDelayTimer.hasExpired()) {
DEBUG1("State to HANG");
m_state = FS_HANG;
m_timeoutTone.stop();
DEBUG1("Send Ext ack");
m_extAck.start();
m_ackDelayTimer.stop();
m_ackMinTimer.stop();
m_timeoutTimer.stop();
m_hangTimer.start();
}
}
if (m_callsignTimer.isRunning() && m_callsignTimer.hasExpired()) {
sendCallsign();
m_callsignTimer.start();
}
}
void CFM::timeoutExtWaitStateSimplex(bool validSignal)
{
if (validSignal) {
DEBUG1("State to TIMEOUT_EXT");
m_state = FS_TIMEOUT_EXT;
m_ackDelayTimer.stop();
} else {
if (m_ackDelayTimer.isRunning() && m_ackDelayTimer.hasExpired()) {
DEBUG1("State to LISTENING");
m_state = FS_LISTENING;
m_ackDelayTimer.stop();
m_timeoutTimer.stop();
m_needReverse = true;
}
}
}
void CFM::linkStateMachine(bool validRFSignal, bool validExtSignal)
{
if (validRFSignal && !m_rfSignal) {
io.setDecode(true);
io.setADCDetection(true);
if (!m_extSignal) {
DEBUG1("State to RELAYING_RF");
m_state = FS_RELAYING_RF;
m_statusTimer.start();
serial.writeFMStatus(m_state);
}
m_rfSignal = true;
}
if (validExtSignal && !m_extSignal) {
if (!m_rfSignal) {
DEBUG1("State to RELAYING_EXT");
m_state = FS_RELAYING_EXT;
m_statusTimer.start();
serial.writeFMStatus(m_state);
}
insertSilence(50U);
m_extSignal = true;
}
if (!validRFSignal && m_rfSignal) {
io.setDecode(false);
io.setADCDetection(false);
if (!m_extSignal) {
DEBUG1("State to LISTENING");
m_state = FS_LISTENING;
m_statusTimer.stop();
}
m_rfSignal = false;
if (m_extEnabled)
serial.writeFMEOT();
}
if (!validExtSignal && m_extSignal) {
if (!m_rfSignal) {
DEBUG1("State to LISTENING");
m_state = FS_LISTENING;
m_statusTimer.stop();
}
m_needReverse = true;
m_extSignal = false;
}
}
void CFM::sendCallsign()
{
if (m_holdoffTimer.isRunning()) {
if (m_holdoffTimer.hasExpired()) {
DEBUG1("Send callsign");
m_callsign.start();
m_holdoffTimer.start();
}
} else {
DEBUG1("Send callsign");
m_callsign.start();
}
}
void CFM::beginRelaying()
{
m_timeoutTimer.start();
m_ackMinTimer.start();
}
uint8_t CFM::getSpace() const
{
// The amount of free space for receiving external audio, in frames.
return m_inputExtRB.getSpace() / FM_SERIAL_BLOCK_SIZE_BYTES;
}
uint8_t CFM::writeData(const uint8_t* data, uint16_t length)
{
//todo check if length is a multiple of 3
m_inputExtRB.addData(data, length);
return 0U;
}
void CFM::insertDelay(uint16_t ms)
{
uint32_t nSamples = ms * 24U;
for (uint32_t i = 0U; i < nSamples; i++)
m_inputRFRB.put(0);
}
void CFM::insertSilence(uint16_t ms)
{
uint32_t nSamples = ms * 24U;
for (uint32_t i = 0U; i < nSamples; i++)
m_outputRFRB.put(0);
}
#endif