Merge pull request #173 from lucamarche-iz1mlt/48kHz

Update 48k version
This commit is contained in:
Jonathan Naylor 2018-05-30 08:22:07 +01:00 committed by GitHub
commit 9eb11f7434
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
75 changed files with 7038 additions and 2324 deletions

View File

@ -1,5 +1,5 @@
/*
* Copyright (C) 2009-2015 by Jonathan Naylor G4KLX
* Copyright (C) 2009-2017 by Jonathan Naylor G4KLX
* Copyright (C) 2016 by Colin Durbridge G4EML
*
* This program is free software; you can redistribute it and/or modify
@ -17,8 +17,6 @@
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
// #define WANT_DEBUG
#include "Config.h"
#include "Globals.h"
#include "CWIdTX.h"
@ -26,7 +24,6 @@
q15_t TONE[] = {
0, 261, 518, 765, 1000, 1218, 1414, 1587, 1732, 1848, 1932, 1983, 2000, 1983, 1932, 1848, 1732, 1587, 1414, 1218, 1000, 765, 518, 261, 0, -261, -518, -765, -1000, -1218, -1414,
-1587, -1732, -1848, -1932, -1983, -2000, -1983, -1932, -1848, -1732, -1587, -1414, -1218, -1000, -765, -518, -261};
q15_t SILENCE[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
@ -78,6 +75,8 @@ const struct {
{'/', 0xEAE80000U, 16U},
{'?', 0xAEEA0000U, 18U},
{',', 0xEEAEE000U, 22U},
{'-', 0xEAAE0000U, 18U},
{'=', 0xEAB80000U, 16U},
{' ', 0x00000000U, 4U},
{0U, 0x00000000U, 0U}
};

View File

@ -21,20 +21,191 @@
#include "Globals.h"
#include "CalDMR.h"
// Voice LC BS Header, CC: 1, srcID: 1, dstID: TG9
const uint8_t VH_1K[] = {0x00U,
0x00U, 0x20U, 0x08U, 0x08U, 0x02U, 0x38U, 0x15U, 0x00U, 0x2CU, 0xA0U, 0x14U,
0x60U, 0x84U, 0x6DU, 0xFFU, 0x57U, 0xD7U, 0x5DU, 0xF5U, 0xDEU, 0x30U, 0x30U,
0x01U, 0x10U, 0x01U, 0x40U, 0x03U, 0xC0U, 0x13U, 0xC1U, 0x1EU, 0x80U, 0x6FU};
// Voice Term BS with LC, CC: 1, srcID: 1, dstID: TG9
const uint8_t VT_1K[] = {0x00U,
0x00U, 0x4FU, 0x08U, 0xDCU, 0x02U, 0x88U, 0x15U, 0x78U, 0x2CU, 0xD0U, 0x14U,
0xC0U, 0x84U, 0xADU, 0xFFU, 0x57U, 0xD7U, 0x5DU, 0xF5U, 0xD9U, 0x65U, 0x24U,
0x02U, 0x28U, 0x06U, 0x20U, 0x0FU, 0x80U, 0x1BU, 0xC1U, 0x07U, 0x80U, 0x5CU};
// Voice LC MS Header, CC: 1, srcID: 1, dstID: TG9
const uint8_t VH_DMO1K[] = {0x00U,
0x00U, 0x20U, 0x08U, 0x08U, 0x02U, 0x38U, 0x15U, 0x00U, 0x2CU, 0xA0U, 0x14U,
0x60U, 0x84U, 0x6DU, 0x5DU, 0x7FU, 0x77U, 0xFDU, 0x75U, 0x7EU, 0x30U, 0x30U,
0x01U, 0x10U, 0x01U, 0x40U, 0x03U, 0xC0U, 0x13U, 0xC1U, 0x1EU, 0x80U, 0x6FU};
// Voice Term MS with LC, CC: 1, srcID: 1, dstID: TG9
const uint8_t VT_DMO1K[] = {0x00U,
0x00U, 0x4FU, 0x08U, 0xDCU, 0x02U, 0x88U, 0x15U, 0x78U, 0x2CU, 0xD0U, 0x14U,
0xC0U, 0x84U, 0xADU, 0x5DU, 0x7FU, 0x77U, 0xFDU, 0x75U, 0x79U, 0x65U, 0x24U,
0x02U, 0x28U, 0x06U, 0x20U, 0x0FU, 0x80U, 0x1BU, 0xC1U, 0x07U, 0x80U, 0x5CU};
// Voice coding data + FEC, 1031 Hz Test Pattern
const uint8_t VOICE_1K[] = {0x00U,
0xCEU, 0xA8U, 0xFEU, 0x83U, 0xACU, 0xC4U, 0x58U, 0x20U, 0x0AU, 0xCEU, 0xA8U,
0xFEU, 0x83U, 0xA0U, 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x0CU, 0xC4U, 0x58U,
0x20U, 0x0AU, 0xCEU, 0xA8U, 0xFEU, 0x83U, 0xACU, 0xC4U, 0x58U, 0x20U, 0x0AU};
// Embedded LC BS: CC: 1, srcID: 1, dstID: TG9
const uint8_t SYNCEMB_1K[6][7] = {
{0x07U, 0x55U, 0xFDU, 0x7DU, 0xF7U, 0x5FU, 0x70U}, // BS VOICE SYNC (audio seq 0)
{0x01U, 0x30U, 0x00U, 0x00U, 0x90U, 0x09U, 0x10U}, // EMB + Embedded LC1 (audio seq 1)
{0x01U, 0x70U, 0x00U, 0x90U, 0x00U, 0x07U, 0x40U}, // EMB + Embedded LC2 (audio seq 2)
{0x01U, 0x70U, 0x00U, 0x31U, 0x40U, 0x07U, 0x40U}, // EMB + Embedded LC3 (audio seq 3)
{0x01U, 0x50U, 0xA1U, 0x71U, 0xD1U, 0x70U, 0x70U}, // EMB + Embedded LC4 (audio seq 4)
{0x01U, 0x10U, 0x00U, 0x00U, 0x00U, 0x0EU, 0x20U}}; // EMB (audio seq 5)
// Embedded LC MS: CC: 1, srcID: 1, dstID: TG9
const uint8_t SYNCEMB_DMO1K[6][7] = {
{0x07U, 0xF7U, 0xD5U, 0xDDU, 0x57U, 0xDFU, 0xD0U}, // MS VOICE SYNC (audio seq 0)
{0x01U, 0x30U, 0x00U, 0x00U, 0x90U, 0x09U, 0x10U}, // EMB + Embedded LC1 (audio seq 1)
{0x01U, 0x70U, 0x00U, 0x90U, 0x00U, 0x07U, 0x40U}, // EMB + Embedded LC2 (audio seq 2)
{0x01U, 0x70U, 0x00U, 0x31U, 0x40U, 0x07U, 0x40U}, // EMB + Embedded LC3 (audio seq 3)
{0x01U, 0x50U, 0xA1U, 0x71U, 0xD1U, 0x70U, 0x70U}, // EMB + Embedded LC4 (audio seq 4)
{0x01U, 0x10U, 0x00U, 0x00U, 0x00U, 0x0EU, 0x20U}}; // EMB (audio seq 5)
// Short LC:
// TS1: dstID: 0, ACTIVITY_NONE
// TS2: dstID: TG9, ACTIVITY_VOICE
const uint8_t SHORTLC_1K[] = {0x33U, 0x3AU, 0xA0U, 0x30U, 0x00U, 0x55U, 0xA6U, 0x5FU, 0x50U};
CCalDMR::CCalDMR() :
m_transmit(false)
m_transmit(false),
m_state(DMRCAL1K_IDLE),
m_frame_start(0U),
m_dmr1k(),
m_audioSeq(0)
{
::memcpy(m_dmr1k, VOICE_1K, DMR_FRAME_LENGTH_BYTES + 1U);
}
void CCalDMR::process()
{
switch (m_modemState) {
case STATE_DMRCAL:
case STATE_LFCAL:
if (m_transmit) {
dmrTX.setCal(true);
dmrTX.process();
} else {
dmrTX.setCal(false);
}
break;
case STATE_DMRCAL1K:
dmr1kcal();
break;
case STATE_DMRDMO1K:
dmrdmo1k();
break;
default:
break;
}
}
void CCalDMR::createData1k(uint8_t n)
{
for(uint8_t i = 0; i < 5U; i++)
m_dmr1k[i + 15U] = SYNCEMB_1K[n][i + 1U];
m_dmr1k[14U] &= 0xF0U;
m_dmr1k[20U] &= 0x0FU;
m_dmr1k[14U] |= SYNCEMB_1K[n][0] & 0x0FU;
m_dmr1k[20U] |= SYNCEMB_1K[n][6] & 0xF0U;
}
void CCalDMR::createDataDMO1k(uint8_t n)
{
for(uint8_t i = 0; i < 5U; i++)
m_dmr1k[i + 15U] = SYNCEMB_DMO1K[n][i + 1U];
m_dmr1k[14U] &= 0xF0U;
m_dmr1k[20U] &= 0x0FU;
m_dmr1k[14U] |= SYNCEMB_DMO1K[n][0] & 0x0FU;
m_dmr1k[20U] |= SYNCEMB_DMO1K[n][6] & 0xF0U;
}
void CCalDMR::dmr1kcal()
{
dmrTX.process();
uint16_t space = dmrTX.getSpace2();
if (space < 1U)
return;
switch (m_state) {
case DMRCAL1K_VH:
dmrTX.setColorCode(1U);
dmrTX.writeShortLC(SHORTLC_1K, 9U);
dmrTX.writeData2(VH_1K, DMR_FRAME_LENGTH_BYTES + 1U);
dmrTX.setStart(true);
m_state = DMRCAL1K_VOICE;
break;
case DMRCAL1K_VOICE:
createData1k(m_audioSeq);
dmrTX.writeData2(m_dmr1k, DMR_FRAME_LENGTH_BYTES + 1U);
if(m_audioSeq == 5U) {
m_audioSeq = 0U;
if(!m_transmit)
m_state = DMRCAL1K_VT;
} else
m_audioSeq++;
break;
case DMRCAL1K_VT:
dmrTX.writeData2(VT_1K, DMR_FRAME_LENGTH_BYTES + 1U);
m_frame_start = dmrTX.getFrameCount();
m_state = DMRCAL1K_WAIT;
break;
case DMRCAL1K_WAIT:
if (dmrTX.getFrameCount() > (m_frame_start + 30U)) {
dmrTX.setStart(false);
dmrTX.resetFifo2();
m_audioSeq = 0U;
m_state = DMRCAL1K_IDLE;
}
break;
default:
m_state = DMRCAL1K_IDLE;
break;
}
}
void CCalDMR::dmrdmo1k()
{
dmrDMOTX.process();
uint16_t space = dmrDMOTX.getSpace();
if (space < 1U)
return;
switch (m_state) {
case DMRCAL1K_VH:
dmrDMOTX.writeData(VH_DMO1K, DMR_FRAME_LENGTH_BYTES + 1U);
m_state = DMRCAL1K_VOICE;
break;
case DMRCAL1K_VOICE:
createDataDMO1k(m_audioSeq);
dmrDMOTX.writeData(m_dmr1k, DMR_FRAME_LENGTH_BYTES + 1U);
if(m_audioSeq == 5U) {
m_audioSeq = 0U;
if(!m_transmit)
m_state = DMRCAL1K_VT;
} else
m_audioSeq++;
break;
case DMRCAL1K_VT:
dmrDMOTX.writeData(VT_DMO1K, DMR_FRAME_LENGTH_BYTES + 1U);
m_state = DMRCAL1K_IDLE;
break;
default:
m_state = DMRCAL1K_IDLE;
m_audioSeq = 0U;
break;
}
}
uint8_t CCalDMR::write(const uint8_t* data, uint8_t length)
@ -44,6 +215,9 @@ uint8_t CCalDMR::write(const uint8_t* data, uint8_t length)
m_transmit = data[0U] == 1U;
if(m_transmit && m_state == DMRCAL1K_IDLE && (m_modemState == STATE_DMRCAL1K || m_modemState == STATE_DMRDMO1K))
m_state = DMRCAL1K_VH;
return 0U;
}

View File

@ -23,16 +23,32 @@
#include "Config.h"
#include "DMRDefines.h"
enum DMRCAL1K {
DMRCAL1K_IDLE,
DMRCAL1K_VH,
DMRCAL1K_VOICE,
DMRCAL1K_VT,
DMRCAL1K_WAIT
};
class CCalDMR {
public:
CCalDMR();
void process();
void dmr1kcal();
void dmrdmo1k();
void createData1k(uint8_t n);
void createDataDMO1k(uint8_t n);
uint8_t write(const uint8_t* data, uint8_t length);
private:
bool m_transmit;
DMRCAL1K m_state;
uint32_t m_frame_start;
uint8_t m_dmr1k[DMR_FRAME_LENGTH_BYTES + 1U];
uint8_t m_audioSeq;
};
#endif

View File

@ -24,7 +24,7 @@
const unsigned int BUFFER_LENGTH = 200U;
const uint32_t PLLMAX = 0x10000U;
const uint32_t PLLINC = PLLMAX / DSTAR_RADIO_BIT_LENGTH;
const uint32_t PLLINC = PLLMAX / DSTAR_RADIO_SYMBOL_LENGTH;
const uint32_t INC = PLLINC / 32U;
// D-Star bit order version of 0x55 0x2D 0x16

94
CalNXDN.cpp Normal file
View File

@ -0,0 +1,94 @@
/*
* Copyright (C) 2018 by Andy Uribe CA6JAU
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "Config.h"
#include "Globals.h"
#include "CalNXDN.h"
// NXDN 1031 Hz Test Pattern, RAN: 1, Unit ID: 1, Dst Group ID: 1, Outbound Direction
const uint8_t NXDN_CAL1K[4][49] = {
{0x00U,
0xCDU, 0xF5U, 0x9DU, 0x5DU, 0x7CU, 0xFAU, 0x0AU, 0x6EU, 0x8AU, 0x23U, 0x56U, 0xE8U,
0x4CU, 0xAAU, 0xDEU, 0x8BU, 0x26U, 0xE4U, 0xF2U, 0x82U, 0x88U,
0xC6U, 0x8AU, 0x74U, 0x29U, 0xA4U, 0xECU, 0xD0U, 0x08U, 0x22U,
0xCEU, 0xA2U, 0xFCU, 0x01U, 0x8CU, 0xECU, 0xDAU, 0x0AU, 0xA0U,
0xEEU, 0x8AU, 0x7EU, 0x2BU, 0x26U, 0xCCU, 0xF8U, 0x8AU, 0x08U},
{0x00U,
0xCDU, 0xF5U, 0x9DU, 0x5DU, 0x7CU, 0x6DU, 0xBBU, 0x0EU, 0xB3U, 0xA4U, 0x26U, 0xA8U,
0x4CU, 0xAAU, 0xDEU, 0x8BU, 0x26U, 0xE4U, 0xF2U, 0x82U, 0x88U,
0xC6U, 0x8AU, 0x74U, 0x29U, 0xA4U, 0xECU, 0xD0U, 0x08U, 0x22U,
0xCEU, 0xA2U, 0xFCU, 0x01U, 0x8CU, 0xECU, 0xDAU, 0x0AU, 0xA0U,
0xEEU, 0x8AU, 0x7EU, 0x2BU, 0x26U, 0xCCU, 0xF8U, 0x8AU, 0x08U},
{0x00U,
0xCDU, 0xF5U, 0x9DU, 0x5DU, 0x76U, 0x3AU, 0x1BU, 0x4AU, 0x81U, 0xA8U, 0xE2U, 0x80U,
0x4CU, 0xAAU, 0xDEU, 0x8BU, 0x26U, 0xE4U, 0xF2U, 0x82U, 0x88U,
0xC6U, 0x8AU, 0x74U, 0x29U, 0xA4U, 0xECU, 0xD0U, 0x08U, 0x22U,
0xCEU, 0xA2U, 0xFCU, 0x01U, 0x8CU, 0xECU, 0xDAU, 0x0AU, 0xA0U,
0xEEU, 0x8AU, 0x7EU, 0x2BU, 0x26U, 0xCCU, 0xF8U, 0x8AU, 0x08U},
{0x00U,
0xCDU, 0xF5U, 0x9DU, 0x5DU, 0x74U, 0x28U, 0x83U, 0x02U, 0xB0U, 0x2DU, 0x07U, 0xE2U,
0x4CU, 0xAAU, 0xDEU, 0x8BU, 0x26U, 0xE4U, 0xF2U, 0x82U, 0x88U,
0xC6U, 0x8AU, 0x74U, 0x29U, 0xA4U, 0xECU, 0xD0U, 0x08U, 0x22U,
0xCEU, 0xA2U, 0xFCU, 0x01U, 0x8CU, 0xECU, 0xDAU, 0x0AU, 0xA0U,
0xEEU, 0x8AU, 0x7EU, 0x2BU, 0x26U, 0xCCU, 0xF8U, 0x8AU, 0x08U}};
CCalNXDN::CCalNXDN() :
m_transmit(false),
m_state(NXDNCAL1K_IDLE),
m_audioSeq(0U)
{
}
void CCalNXDN::process()
{
nxdnTX.process();
uint16_t space = nxdnTX.getSpace();
if (space < 1U)
return;
switch (m_state) {
case NXDNCAL1K_TX:
nxdnTX.writeData(NXDN_CAL1K[m_audioSeq], NXDN_FRAME_LENGTH_BYTES + 1U);
m_audioSeq = (m_audioSeq + 1U) % 4U;
if(!m_transmit)
m_state = NXDNCAL1K_IDLE;
break;
default:
m_state = NXDNCAL1K_IDLE;
m_audioSeq = 0U;
break;
}
}
uint8_t CCalNXDN::write(const uint8_t* data, uint8_t length)
{
if (length != 1U)
return 4U;
m_transmit = data[0U] == 1U;
if(m_transmit && m_state == NXDNCAL1K_IDLE)
m_state = NXDNCAL1K_TX;
return 0U;
}

44
CalNXDN.h Normal file
View File

@ -0,0 +1,44 @@
/*
* Copyright (C) 2018 by Andy Uribe CA6JAU
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#if !defined(CALNXDN_H)
#define CALNXDN_H
#include "Config.h"
enum NXDNCAL1K {
NXDNCAL1K_IDLE,
NXDNCAL1K_TX
};
class CCalNXDN {
public:
CCalNXDN();
void process();
uint8_t write(const uint8_t* data, uint8_t length);
private:
bool m_transmit;
NXDNCAL1K m_state;
uint8_t m_audioSeq;
};
#endif

97
CalP25.cpp Normal file
View File

@ -0,0 +1,97 @@
/*
* Copyright (C) 2018 by Andy Uribe CA6JAU
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "Config.h"
#include "Globals.h"
#include "CalP25.h"
// Recommended 1011 Hz test pattern for P25 Phase 1 (ANSI/TIA-102.CAAA)
// NAC: 0x293, srcID: 1, dstID: TG1
unsigned char LDU1_1K[] = {0x00,
0x55, 0x75, 0xF5, 0xFF, 0x77, 0xFF, 0x29, 0x35, 0x54, 0x7B, 0xCB, 0x19, 0x4D, 0x0D, 0xCE, 0x24, 0xA1, 0x24,
0x0D, 0x43, 0x3C, 0x0B, 0xE1, 0xB9, 0x18, 0x44, 0xFC, 0xC1, 0x62, 0x96, 0x27, 0x60, 0xE4, 0xE2, 0x4A, 0x10,
0x90, 0xD4, 0x33, 0xC0, 0xBE, 0x1B, 0x91, 0x84, 0x4C, 0xFC, 0x16, 0x29, 0x62, 0x76, 0x0E, 0xC0, 0x00, 0x00,
0x00, 0x00, 0x03, 0x89, 0x28, 0x49, 0x0D, 0x43, 0x3C, 0x02, 0xF8, 0x6E, 0x46, 0x11, 0x3F, 0xC1, 0x62, 0x94,
0x89, 0xD8, 0x39, 0x00, 0x00, 0x00, 0x00, 0x1C, 0x38, 0x24, 0xA1, 0x24, 0x35, 0x0C, 0xF0, 0x2F, 0x86, 0xE4,
0x18, 0x44, 0xFF, 0x05, 0x8A, 0x58, 0x9D, 0x83, 0xB0, 0x00, 0x00, 0x00, 0x00, 0x70, 0xE2, 0x4A, 0x12, 0x40,
0xD4, 0x33, 0xC0, 0xBE, 0x1B, 0x91, 0x84, 0x4F, 0xF0, 0x16, 0x29, 0x62, 0x76, 0x0E, 0x6D, 0xE5, 0xD5, 0x48,
0xAD, 0xE3, 0x89, 0x28, 0x49, 0x0D, 0x43, 0x3C, 0x08, 0xF8, 0x6E, 0x46, 0x11, 0x3F, 0xC1, 0x62, 0x96, 0x24,
0xD8, 0x3B, 0xA1, 0x41, 0xC2, 0xD2, 0xBA, 0x38, 0x90, 0xA1, 0x24, 0x35, 0x0C, 0xF0, 0x2F, 0x86, 0xE4, 0x60,
0x44, 0xFF, 0x05, 0x8A, 0x58, 0x9D, 0x83, 0x94, 0xC8, 0xFB, 0x02, 0x35, 0xA4, 0xE2, 0x4A, 0x12, 0x43, 0x50,
0x33, 0xC0, 0xBE, 0x1B, 0x91, 0x84, 0x4F, 0xF0, 0x58, 0x29, 0x62, 0x76, 0x0E, 0xC0, 0x00, 0x00, 0x00, 0x0C,
0x89, 0x28, 0x49, 0x0D, 0x43, 0x3C, 0x0B, 0xE1, 0xB8, 0x46, 0x11, 0x3F, 0xC1, 0x62, 0x96, 0x27, 0x60, 0xE4};
unsigned char LDU2_1K[] = {0x00,
0x55, 0x75, 0xF5, 0xFF, 0x77, 0xFF, 0x29, 0x3A, 0xB8, 0xA4, 0xEF, 0xB0, 0x9A, 0x8A, 0xCE, 0x24, 0xA1, 0x24,
0x0D, 0x43, 0x3C, 0x0B, 0xE1, 0xB9, 0x18, 0x44, 0xFC, 0xC1, 0x62, 0x96, 0x27, 0x60, 0xEC, 0xE2, 0x4A, 0x10,
0x90, 0xD4, 0x33, 0xC0, 0xBE, 0x1B, 0x91, 0x84, 0x4C, 0xFC, 0x16, 0x29, 0x62, 0x76, 0x0E, 0x40, 0x00, 0x00,
0x00, 0x00, 0x03, 0x89, 0x28, 0x49, 0x0D, 0x43, 0x3C, 0x02, 0xF8, 0x6E, 0x46, 0x11, 0x3F, 0xC1, 0x62, 0x94,
0x89, 0xD8, 0x3B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x38, 0x24, 0xA1, 0x24, 0x35, 0x0C, 0xF0, 0x2F, 0x86, 0xE4,
0x18, 0x44, 0xFF, 0x05, 0x8A, 0x58, 0x9D, 0x83, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00, 0xE2, 0x4A, 0x12, 0x40,
0xD4, 0x33, 0xC0, 0xBE, 0x1B, 0x91, 0x84, 0x4F, 0xF0, 0x16, 0x29, 0x62, 0x76, 0x0E, 0xE0, 0xE0, 0x00, 0x00,
0x00, 0x03, 0x89, 0x28, 0x49, 0x0D, 0x43, 0x3C, 0x08, 0xF8, 0x6E, 0x46, 0x11, 0x3F, 0xC1, 0x62, 0x96, 0x24,
0xD8, 0x39, 0xAE, 0x8B, 0x48, 0xB6, 0x49, 0x38, 0x90, 0xA1, 0x24, 0x35, 0x0C, 0xF0, 0x2F, 0x86, 0xE4, 0x60,
0x44, 0xFF, 0x05, 0x8A, 0x58, 0x9D, 0x83, 0xB9, 0xA8, 0xF4, 0xF1, 0xFD, 0x60, 0xE2, 0x4A, 0x12, 0x43, 0x50,
0x33, 0xC0, 0xBE, 0x1B, 0x91, 0x84, 0x4F, 0xF0, 0x58, 0x29, 0x62, 0x76, 0x0E, 0x40, 0x00, 0x00, 0x00, 0x0C,
0x89, 0x28, 0x49, 0x0D, 0x43, 0x3C, 0x0B, 0xE1, 0xB8, 0x46, 0x11, 0x3F, 0xC1, 0x62, 0x96, 0x27, 0x60, 0xEC};
CCalP25::CCalP25() :
m_transmit(false),
m_state(P25CAL1K_IDLE)
{
}
void CCalP25::process()
{
p25TX.process();
uint16_t space = p25TX.getSpace();
if (space < 1U)
return;
switch (m_state) {
case P25CAL1K_LDU1:
p25TX.writeData(LDU1_1K, P25_LDU_FRAME_LENGTH_BYTES + 1U);
m_state = P25CAL1K_LDU2;
break;
case P25CAL1K_LDU2:
p25TX.writeData(LDU2_1K, P25_LDU_FRAME_LENGTH_BYTES + 1U);
if(!m_transmit)
m_state = P25CAL1K_IDLE;
else
m_state = P25CAL1K_LDU1;
break;
default:
m_state = P25CAL1K_IDLE;
break;
}
}
uint8_t CCalP25::write(const uint8_t* data, uint8_t length)
{
if (length != 1U)
return 4U;
m_transmit = data[0U] == 1U;
if(m_transmit && m_state == P25CAL1K_IDLE)
m_state = P25CAL1K_LDU1;
return 0U;
}

45
CalP25.h Normal file
View File

@ -0,0 +1,45 @@
/*
* Copyright (C) 2018 by Andy Uribe CA6JAU
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#if !defined(CALP25_H)
#define CALP25_H
#include "Config.h"
#include "P25Defines.h"
enum P25CAL1K {
P25CAL1K_IDLE,
P25CAL1K_LDU1,
P25CAL1K_LDU2
};
class CCalP25 {
public:
CCalP25();
void process();
uint8_t write(const uint8_t* data, uint8_t length);
private:
bool m_transmit;
P25CAL1K m_state;
};
#endif

65
CalRSSI.cpp Normal file
View File

@ -0,0 +1,65 @@
/*
* Copyright (C) 2016 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "Config.h"
#include "Globals.h"
#include "CalRSSI.h"
#include "Utils.h"
CCalRSSI::CCalRSSI() :
m_count(0U),
m_accum(0U),
m_min(0xFFFFU),
m_max(0x0000U)
{
}
void CCalRSSI::samples(const uint16_t* rssi, uint8_t length)
{
for (uint16_t i = 0U; i < length; i++) {
uint16_t ss = rssi[i];
m_accum += ss;
if (ss > m_max)
m_max = ss;
if (ss < m_min)
m_min = ss;
m_count++;
if (m_count >= 24000U) {
uint16_t ave = m_accum / m_count;
uint8_t buffer[6U];
buffer[0U] = (m_max >> 8) & 0xFFU;
buffer[1U] = (m_max >> 0) & 0xFFU;
buffer[2U] = (m_min >> 8) & 0xFFU;
buffer[3U] = (m_min >> 0) & 0xFFU;
buffer[4U] = (ave >> 8) & 0xFFU;
buffer[5U] = (ave >> 0) & 0xFFU;
serial.writeRSSIData(buffer, 6U);
m_count = 0U;
m_accum = 0U;
m_min = 0xFFFFU;
m_max = 0x0000U;
}
}
}

38
CalRSSI.h Normal file
View File

@ -0,0 +1,38 @@
/*
* Copyright (C) 2016 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#if !defined(CALRSSI_H)
#define CALRSSI_H
#include "Config.h"
class CCalRSSI {
public:
CCalRSSI();
void samples(const uint16_t* rssi, uint8_t length);
private:
uint32_t m_count;
uint32_t m_accum;
uint16_t m_min;
uint16_t m_max;
};
#endif

View File

@ -1,5 +1,5 @@
/*
* Copyright (C) 2015,2016 by Jonathan Naylor G4KLX
* Copyright (C) 2015,2016,2017 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -27,7 +27,7 @@
// Frequencies such as 10.0 Mhz (48000 * 208.333) or 20 Mhz (48000 * 416.666) are not suitable.
//
// For 12 MHz
// #define EXTERNAL_OSC 12000000
#define EXTERNAL_OSC 12000000
// For 12.288 MHz
// #define EXTERNAL_OSC 12288000
// For 14.4 MHz
@ -45,21 +45,28 @@
// #define ARDUINO_DUE_PAPA
// For the ZUM V1.0 and V1.0.1 boards pin layout
#define ARDUINO_DUE_ZUM_V10
// #define ARDUINO_DUE_ZUM_V10
// For the SQ6POG board
// #define STM32F1_POG
// For the SP8NTH board
// #define ARDUINO_DUE_NTH
// To use wider C4FSK filters for DMR, System Fusion and P25 on transmit
// #define WIDE_C4FSK_FILTERS_TX
// To use wider C4FSK filters for DMR, System Fusion and P25 on receive
// #define WIDE_C4FSK_FILTERS_RX
// For ST Nucleo-64 STM32F446RE board
// #define STM32F4_NUCLEO_MORPHO_HEADER
#define STM32F4_NUCLEO_ARDUINO_HEADER
// Use separate mode pins to switch external filters/bandwidth for example
// #define STM32F4_NUCLEO_MODE_PINS
// Pass RSSI information to the host
// #define SEND_RSSI_DATA
#define SEND_RSSI_DATA
// Use the modem as a serial repeater for Nextion displays
// #define SERIAL_REPEATER
#endif
// To reduce CPU load, you can remove the DC blocker by commenting out the next line
// #define USE_DCBLOCKER
#endif

View File

@ -1,5 +1,5 @@
/*
* Copyright (C) 2009-2016 by Jonathan Naylor G4KLX
* Copyright (C) 2009-2017 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -16,8 +16,6 @@
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#define WANT_DEBUG
#include "Config.h"
#include "Globals.h"
#include "DMRDMORX.h"
@ -26,10 +24,10 @@
const q15_t SCALING_FACTOR = 19505; // Q15(0.60)
const uint8_t MAX_SYNC_SYMBOLS_ERRS = 2U;
const uint8_t MAX_SYNC_BYTES_ERRS = 3U;
const uint8_t MAX_SYNC_SYMBOLS_ERRS = 4U;
const uint8_t MAX_SYNC_BYTES_ERRS = 6U;
const uint8_t MAX_SYNC_LOST_FRAMES = 13U;
const uint8_t MAX_SYNC_LOST_FRAMES = 26U;
const uint8_t BIT_MASK_TABLE[] = {0x80U, 0x40U, 0x20U, 0x10U, 0x08U, 0x04U, 0x02U, 0x01U};
@ -59,8 +57,7 @@ m_colorCode(0U),
m_state(DMORXS_NONE),
m_n(0U),
m_type(0U),
m_rssiCount(0U),
m_rssi(0U)
m_rssi()
{
}
@ -73,7 +70,6 @@ void CDMRDMORX::reset()
m_state = DMORXS_NONE;
m_startPtr = 0U;
m_endPtr = NOENDPTR;
m_rssiCount = 0U;
}
void CDMRDMORX::samples(const q15_t* samples, const uint16_t* rssi, uint8_t length)
@ -89,6 +85,7 @@ void CDMRDMORX::samples(const q15_t* samples, const uint16_t* rssi, uint8_t leng
bool CDMRDMORX::processSample(q15_t sample, uint16_t rssi)
{
m_buffer[m_dataPtr] = sample;
m_rssi[m_dataPtr] = rssi;
m_bitBuffer[m_bitPtr] <<= 1;
if (sample < 0)
@ -97,9 +94,6 @@ bool CDMRDMORX::processSample(q15_t sample, uint16_t rssi)
if (m_state == DMORXS_NONE) {
correlateSync(true);
} else {
// Grab the RSSI data during the frame
if (m_state == DMORXS_VOICE && m_dataPtr == m_syncPtr)
m_rssi = rssi;
uint16_t min = m_syncPtr + DMO_BUFFER_LENGTH_SAMPLES - 1U;
uint16_t max = m_syncPtr + 1U;
@ -148,7 +142,7 @@ bool CDMRDMORX::processSample(q15_t sample, uint16_t rssi)
switch (dataType) {
case DT_DATA_HEADER:
DEBUG4("DMRDMORX: data header found pos/centre/threshold", m_syncPtr, centre, threshold);
serial.writeDMRData(true, frame, DMR_FRAME_LENGTH_BYTES + 1U);
writeRSSIData(frame);
m_state = DMORXS_DATA;
m_type = 0x00U;
break;
@ -157,32 +151,32 @@ bool CDMRDMORX::processSample(q15_t sample, uint16_t rssi)
case DT_RATE_1_DATA:
if (m_state == DMORXS_DATA) {
DEBUG4("DMRDMORX: data payload found pos/centre/threshold", m_syncPtr, centre, threshold);
serial.writeDMRData(true, frame, DMR_FRAME_LENGTH_BYTES + 1U);
writeRSSIData(frame);
m_type = dataType;
}
break;
case DT_VOICE_LC_HEADER:
DEBUG4("DMRDMORX: voice header found pos/centre/threshold", m_syncPtr, centre, threshold);
serial.writeDMRData(true, frame, DMR_FRAME_LENGTH_BYTES + 1U);
writeRSSIData(frame);
m_state = DMORXS_VOICE;
break;
case DT_VOICE_PI_HEADER:
if (m_state == DMORXS_VOICE) {
DEBUG4("DMRDMORX: voice pi header found pos/centre/threshold", m_syncPtr, centre, threshold);
serial.writeDMRData(true, frame, DMR_FRAME_LENGTH_BYTES + 1U);
writeRSSIData(frame);
}
m_state = DMORXS_VOICE;
break;
case DT_TERMINATOR_WITH_LC:
if (m_state == DMORXS_VOICE) {
DEBUG4("DMRDMORX: voice terminator found pos/centre/threshold", m_syncPtr, centre, threshold);
serial.writeDMRData(true, frame, DMR_FRAME_LENGTH_BYTES + 1U);
writeRSSIData(frame);
reset();
}
break;
default: // DT_CSBK
DEBUG4("DMRDMORX: csbk found pos/centre/threshold", m_syncPtr, centre, threshold);
serial.writeDMRData(true, frame, DMR_FRAME_LENGTH_BYTES + 1U);
writeRSSIData(frame);
reset();
break;
}
@ -190,22 +184,7 @@ bool CDMRDMORX::processSample(q15_t sample, uint16_t rssi)
} else if (m_control == CONTROL_VOICE) {
// Voice sync
DEBUG4("DMRDMORX: voice sync found pos/centre/threshold", m_syncPtr, centre, threshold);
#if defined(SEND_RSSI_DATA)
// Send RSSI data approximately every second
if (m_rssiCount == 2U) {
frame[34U] = (m_rssi >> 8) & 0xFFU;
frame[35U] = (m_rssi >> 0) & 0xFFU;
serial.writeDMRData(true, frame, DMR_FRAME_LENGTH_BYTES + 3U);
} else {
serial.writeDMRData(true, frame, DMR_FRAME_LENGTH_BYTES + 1U);
}
m_rssiCount++;
if (m_rssiCount >= 16U)
m_rssiCount = 0U;
#else
serial.writeDMRData(true, frame, DMR_FRAME_LENGTH_BYTES + 1U);
#endif
writeRSSIData(frame);
m_state = DMORXS_VOICE;
m_syncCount = 0U;
m_n = 0U;
@ -225,26 +204,12 @@ bool CDMRDMORX::processSample(q15_t sample, uint16_t rssi)
} else {
frame[0U] = ++m_n;
}
#if defined(SEND_RSSI_DATA)
// Send RSSI data approximately every second
if (m_rssiCount == 2U) {
frame[34U] = (m_rssi >> 8) & 0xFFU;
frame[35U] = (m_rssi >> 0) & 0xFFU;
serial.writeDMRData(true, frame, DMR_FRAME_LENGTH_BYTES + 3U);
} else {
serial.writeDMRData(true, frame, DMR_FRAME_LENGTH_BYTES + 1U);
}
m_rssiCount++;
if (m_rssiCount >= 16U)
m_rssiCount = 0U;
#else
serial.writeDMRData(true, frame, DMR_FRAME_LENGTH_BYTES + 1U);
#endif
} else if (m_state == DMORXS_DATA) {
if (m_type != 0x00U) {
frame[0U] = CONTROL_DATA | m_type;
serial.writeDMRData(true, frame, DMR_FRAME_LENGTH_BYTES + 1U);
writeRSSIData(frame);
}
}
}
@ -267,16 +232,13 @@ bool CDMRDMORX::processSample(q15_t sample, uint16_t rssi)
void CDMRDMORX::correlateSync(bool first)
{
uint8_t errs1 = countBits32((m_bitBuffer[m_bitPtr] & DMR_SYNC_SYMBOLS_MASK) ^ DMR_S2_DATA_SYNC_SYMBOLS);
uint8_t errs2 = countBits32((m_bitBuffer[m_bitPtr] & DMR_SYNC_SYMBOLS_MASK) ^ DMR_MS_DATA_SYNC_SYMBOLS);
uint8_t errs = countBits32((m_bitBuffer[m_bitPtr] & DMR_SYNC_SYMBOLS_MASK) ^ DMR_MS_DATA_SYNC_SYMBOLS);
// The voice sync is the complement of the data sync
bool data1 = (errs1 <= MAX_SYNC_SYMBOLS_ERRS);
bool data2 = (errs2 <= MAX_SYNC_SYMBOLS_ERRS);
bool voice1 = (errs1 >= (DMR_SYNC_LENGTH_SYMBOLS - MAX_SYNC_SYMBOLS_ERRS));
bool voice2 = (errs2 >= (DMR_SYNC_LENGTH_SYMBOLS - MAX_SYNC_SYMBOLS_ERRS));
bool data = (errs <= MAX_SYNC_SYMBOLS_ERRS);
bool voice = (errs >= (DMR_SYNC_LENGTH_SYMBOLS - MAX_SYNC_SYMBOLS_ERRS));
if (data1 || data2 || voice1 || voice2) {
if (data || voice) {
uint16_t ptr = m_dataPtr + DMO_BUFFER_LENGTH_SAMPLES - DMR_SYNC_LENGTH_SAMPLES + DMR_RADIO_SYMBOL_LENGTH;
if (ptr >= DMO_BUFFER_LENGTH_SAMPLES)
ptr -= DMO_BUFFER_LENGTH_SAMPLES;
@ -285,23 +247,34 @@ void CDMRDMORX::correlateSync(bool first)
q15_t min = 16000;
q15_t max = -16000;
uint32_t mask = 0x00800000U;
for (uint8_t i = 0U; i < DMR_SYNC_LENGTH_SYMBOLS; i++, mask >>= 1) {
bool b;
if (data1 || voice1)
b = (DMR_S2_DATA_SYNC_SYMBOLS & mask) == mask;
for (uint8_t i = 0U; i < DMR_SYNC_LENGTH_SYMBOLS; i++) {
q15_t val = m_buffer[ptr];
if (val > max)
max = val;
if (val < min)
min = val;
int8_t corrVal;
if (data)
corrVal = DMR_MS_DATA_SYNC_SYMBOLS_VALUES[i];
else
b = (DMR_MS_DATA_SYNC_SYMBOLS & mask) == mask;
corrVal = DMR_MS_VOICE_SYNC_SYMBOLS_VALUES[i];
if (m_buffer[ptr] > max)
max = m_buffer[ptr];
if (m_buffer[ptr] < min)
min = m_buffer[ptr];
if (data1 || data2)
corr += b ? -m_buffer[ptr] : m_buffer[ptr];
else // if (voice)
corr += b ? m_buffer[ptr] : -m_buffer[ptr];
switch (corrVal) {
case +3:
corr -= (val + val + val);
break;
case +1:
corr -= val;
break;
case -1:
corr += val;
break;
default: // -3
corr += (val + val + val);
break;
}
ptr += DMR_RADIO_SYMBOL_LENGTH;
if (ptr >= DMO_BUFFER_LENGTH_SAMPLES)
@ -321,21 +294,16 @@ void CDMRDMORX::correlateSync(bool first)
samplesToBits(ptr, DMR_SYNC_LENGTH_SYMBOLS, sync, 4U, centre, threshold);
if (data1 || data2) {
if (data) {
uint8_t errs = 0U;
for (uint8_t i = 0U; i < DMR_SYNC_BYTES_LENGTH; i++) {
if (data1)
errs += countBits8((sync[i] & DMR_SYNC_BYTES_MASK[i]) ^ DMR_S2_DATA_SYNC_BYTES[i]);
else
for (uint8_t i = 0U; i < DMR_SYNC_BYTES_LENGTH; i++)
errs += countBits8((sync[i] & DMR_SYNC_BYTES_MASK[i]) ^ DMR_MS_DATA_SYNC_BYTES[i]);
}
if (errs <= MAX_SYNC_BYTES_ERRS) {
if (first) {
m_threshold[0U] = m_threshold[1U] = m_threshold[2U] = m_threshold[3U] = threshold;
m_centre[0U] = m_centre[1U] = m_centre[2U] = m_centre[3U] = centre;
m_averagePtr = 0U;
m_rssiCount = 0U;
} else {
m_threshold[m_averagePtr] = threshold;
m_centre[m_averagePtr] = centre;
@ -359,19 +327,14 @@ void CDMRDMORX::correlateSync(bool first)
}
} else { // if (voice1 || voice2)
uint8_t errs = 0U;
for (uint8_t i = 0U; i < DMR_SYNC_BYTES_LENGTH; i++) {
if (voice1)
errs += countBits8((sync[i] & DMR_SYNC_BYTES_MASK[i]) ^ DMR_S2_VOICE_SYNC_BYTES[i]);
else
for (uint8_t i = 0U; i < DMR_SYNC_BYTES_LENGTH; i++)
errs += countBits8((sync[i] & DMR_SYNC_BYTES_MASK[i]) ^ DMR_MS_VOICE_SYNC_BYTES[i]);
}
if (errs <= MAX_SYNC_BYTES_ERRS) {
if (first) {
m_threshold[0U] = m_threshold[1U] = m_threshold[2U] = m_threshold[3U] = threshold;
m_centre[0U] = m_centre[1U] = m_centre[2U] = m_centre[3U] = centre;
m_averagePtr = 0U;
m_rssiCount = 0U;
} else {
m_threshold[m_averagePtr] = threshold;
m_centre[m_averagePtr] = centre;
@ -436,3 +399,27 @@ void CDMRDMORX::setColorCode(uint8_t colorCode)
m_colorCode = colorCode;
}
void CDMRDMORX::writeRSSIData(uint8_t* frame)
{
#if defined(SEND_RSSI_DATA)
// Calculate RSSI average over a burst period. We don't take into account 2.5 ms at the beginning and 2.5 ms at the end
uint16_t start = m_startPtr + DMR_SYNC_LENGTH_SAMPLES / 2U;
uint32_t accum = 0U;
for (uint16_t i = 0U; i < (DMR_FRAME_LENGTH_SAMPLES - DMR_SYNC_LENGTH_SAMPLES); i++) {
accum += m_rssi[start];
start++;
if (start >= DMO_BUFFER_LENGTH_SAMPLES)
start -= DMO_BUFFER_LENGTH_SAMPLES;
}
uint16_t avg = accum / (DMR_FRAME_LENGTH_SAMPLES - DMR_SYNC_LENGTH_SAMPLES);
frame[34U] = (avg >> 8) & 0xFFU;
frame[35U] = (avg >> 0) & 0xFFU;
serial.writeDMRData(true, frame, DMR_FRAME_LENGTH_BYTES + 3U);
#else
serial.writeDMRData(true, frame, DMR_FRAME_LENGTH_BYTES + 1U);
#endif
}

View File

@ -1,5 +1,5 @@
/*
* Copyright (C) 2015,2016 by Jonathan Naylor G4KLX
* Copyright (C) 2015,2016,2017 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -58,13 +58,12 @@ private:
DMORX_STATE m_state;
uint8_t m_n;
uint8_t m_type;
uint16_t m_rssiCount;
uint16_t m_rssi;
uint16_t m_rssi[DMO_BUFFER_LENGTH_SAMPLES];
bool processSample(q15_t sample, uint16_t rssi);
void correlateSync(bool first);
void samplesToBits(uint16_t start, uint8_t count, uint8_t* buffer, uint16_t offset, q15_t centre, q15_t threshold);
void writeRSSIData(uint8_t* frame);
};
#endif

View File

@ -1,6 +1,7 @@
/*
* Copyright (C) 2009-2016 by Jonathan Naylor G4KLX
* Copyright (C) 2009-2017 by Jonathan Naylor G4KLX
* Copyright (C) 2016 by Colin Durbridge G4EML
* Copyright (C) 2017 by Andy Uribe CA6JAU
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -17,22 +18,33 @@
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
// #define WANT_DEBUG
#include "Config.h"
#include "Globals.h"
#include "DMRSlotType.h"
// Generated using rcosdesign(0.2, 4, 10, 'sqrt') in MATLAB
static q15_t DMR_C4FSK_FILTER[] = {486, 39, -480, -1022, -1526, -1928, -2164, -2178, -1927, -1384, -548, 561, 1898, 3399, 4980, 6546, 7999, 9246, 10202, 10803, 11008, 10803, 10202, 9246,
7999, 6546, 4980, 3399, 1898, 561, -548, -1384, -1927, -2178, -2164, -1928, -1526, -1022, -480, 39, 486, 0};
const uint16_t DMR_C4FSK_FILTER_LEN = 42U;
// Generated using rcosdesign(0.2, 8, 10, 'sqrt') in MATLAB
static q15_t RRC_0_2_FILTER[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 850, 592, 219, -234, -720, -1179,
-1548, -1769, -1795, -1597, -1172, -544, 237, 1092, 1927, 2637,
3120, 3286, 3073, 2454, 1447, 116, -1431, -3043, -4544, -5739,
-6442, -6483, -5735, -4121, -1633, 1669, 5651, 10118, 14822,
19484, 23810, 27520, 30367, 32156, 32767, 32156, 30367, 27520,
23810, 19484, 14822, 10118, 5651, 1669, -1633, -4121, -5735,
-6483, -6442, -5739, -4544, -3043, -1431, 116, 1447, 2454,
3073, 3286, 3120, 2637, 1927, 1092, 237, -544, -1172, -1597,
-1795, -1769, -1548, -1179, -720, -234, 219, 592, 850}; // numTaps = 90, L = 10
const uint16_t RRC_0_2_FILTER_PHASE_LEN = 9U; // phaseLength = numTaps/L
const q15_t DMR_LEVELA[] = { 395, 395, 395, 395, 395, 395, 395, 395, 395, 395};
const q15_t DMR_LEVELB[] = { 131, 131, 131, 131, 131, 131, 131, 131, 131, 131};
const q15_t DMR_LEVELC[] = {-131, -131, -131, -131, -131, -131, -131, -131, -131, -131};
const q15_t DMR_LEVELD[] = {-395, -395, -395, -395, -395, -395, -395, -395, -395, -395};
const q15_t DMR_LEVELA = 1362;
const q15_t DMR_LEVELB = 454;
const q15_t DMR_LEVELC = -454;
const q15_t DMR_LEVELD = -1362;
const uint8_t BIT_MASK_TABLE[] = {0x80U, 0x40U, 0x20U, 0x10U, 0x08U, 0x04U, 0x02U, 0x01U};
#define WRITE_BIT1(p,i,b) p[(i)>>3] = (b) ? (p[(i)>>3] | BIT_MASK_TABLE[(i)&7]) : (p[(i)>>3] & ~BIT_MASK_TABLE[(i)&7])
#define READ_BIT1(p,i) (p[(i)>>3] & BIT_MASK_TABLE[(i)&7])
const uint8_t DMR_SYNC = 0x5FU;
CDMRDMOTX::CDMRDMOTX() :
m_fifo(),
@ -41,14 +53,14 @@ m_modState(),
m_poBuffer(),
m_poLen(0U),
m_poPtr(0U),
m_txDelay(240U), // 200ms
m_count(0U)
m_txDelay(240U) // 200ms
{
::memset(m_modState, 0x00U, 90U * sizeof(q15_t));
::memset(m_modState, 0x00U, 16U * sizeof(q15_t));
m_modFilter.numTaps = DMR_C4FSK_FILTER_LEN;
m_modFilter.L = DMR_RADIO_SYMBOL_LENGTH;
m_modFilter.phaseLength = RRC_0_2_FILTER_PHASE_LEN;
m_modFilter.pCoeffs = RRC_0_2_FILTER;
m_modFilter.pState = m_modState;
m_modFilter.pCoeffs = DMR_C4FSK_FILTER;
}
void CDMRDMOTX::process()
@ -56,13 +68,17 @@ void CDMRDMOTX::process()
if (m_poLen == 0U && m_fifo.getData() > 0U) {
if (!m_tx) {
for (uint16_t i = 0U; i < m_txDelay; i++)
m_poBuffer[m_poLen++] = 0x00U;
m_poBuffer[i] = DMR_SYNC;
m_poLen = m_txDelay;
} else {
for (unsigned int i = 0U; i < 72U; i++)
m_poBuffer[m_poLen++] = 0x00U;
m_poBuffer[i] = DMR_SYNC;
for (unsigned int i = 0U; i < DMR_FRAME_LENGTH_BYTES; i++)
m_poBuffer[i] = m_fifo.get();
m_poBuffer[i + 39U] = m_fifo.get();
m_poLen = 72U;
}
m_poPtr = 0U;
@ -104,53 +120,34 @@ uint8_t CDMRDMOTX::writeData(const uint8_t* data, uint8_t length)
void CDMRDMOTX::writeByte(uint8_t c)
{
q15_t inBuffer[DMR_RADIO_SYMBOL_LENGTH * 4U + 1U];
q15_t outBuffer[DMR_RADIO_SYMBOL_LENGTH * 4U + 1U];
q15_t inBuffer[4U];
q15_t outBuffer[DMR_RADIO_SYMBOL_LENGTH * 4U];
const uint8_t MASK = 0xC0U;
q15_t* p = inBuffer;
for (uint8_t i = 0U; i < 4U; i++, c <<= 2, p += DMR_RADIO_SYMBOL_LENGTH) {
for (uint8_t i = 0U; i < 4U; i++, c <<= 2) {
switch (c & MASK) {
case 0xC0U:
::memcpy(p, DMR_LEVELA, DMR_RADIO_SYMBOL_LENGTH * sizeof(q15_t));
inBuffer[i] = DMR_LEVELA;
break;
case 0x80U:
::memcpy(p, DMR_LEVELB, DMR_RADIO_SYMBOL_LENGTH * sizeof(q15_t));
inBuffer[i] = DMR_LEVELB;
break;
case 0x00U:
::memcpy(p, DMR_LEVELC, DMR_RADIO_SYMBOL_LENGTH * sizeof(q15_t));
inBuffer[i] = DMR_LEVELC;
break;
default:
::memcpy(p, DMR_LEVELD, DMR_RADIO_SYMBOL_LENGTH * sizeof(q15_t));
inBuffer[i] = DMR_LEVELD;
break;
}
}
uint16_t blockSize = DMR_RADIO_SYMBOL_LENGTH * 4U;
::arm_fir_interpolate_q15(&m_modFilter, inBuffer, outBuffer, 4U);
// Handle the case of the oscillator not being accurate enough
if (m_sampleCount > 0U) {
m_count += DMR_RADIO_SYMBOL_LENGTH * 4U;
if (m_count >= m_sampleCount) {
if (m_sampleInsert) {
inBuffer[DMR_RADIO_SYMBOL_LENGTH * 4U] = inBuffer[DMR_RADIO_SYMBOL_LENGTH * 4U - 1U];
blockSize++;
} else {
blockSize--;
}
m_count -= m_sampleCount;
}
}
::arm_fir_fast_q15(&m_modFilter, inBuffer, outBuffer, blockSize);
io.write(STATE_DMR, outBuffer, blockSize);
io.write(STATE_DMR, outBuffer, DMR_RADIO_SYMBOL_LENGTH * 4U);
}
uint16_t CDMRDMOTX::getSpace() const
uint8_t CDMRDMOTX::getSpace() const
{
return m_fifo.getSpace() / (DMR_FRAME_LENGTH_BYTES + 2U);
}
@ -158,5 +155,8 @@ uint16_t CDMRDMOTX::getSpace() const
void CDMRDMOTX::setTXDelay(uint8_t delay)
{
m_txDelay = 600U + uint16_t(delay) * 12U; // 500ms + tx delay
if (m_txDelay > 1200U)
m_txDelay = 1200U;
}

View File

@ -1,5 +1,5 @@
/*
* Copyright (C) 2015,2016 by Jonathan Naylor G4KLX
* Copyright (C) 2015,2016,2017 by Jonathan Naylor G4KLX
* Copyright (C) 2016 by Colin Durbridge G4EML
*
* This program is free software; you can redistribute it and/or modify
@ -35,17 +35,16 @@ public:
void setTXDelay(uint8_t delay);
uint16_t getSpace() const;
uint8_t getSpace() const;
private:
CSerialRB m_fifo;
arm_fir_instance_q15 m_modFilter;
q15_t m_modState[90U]; // NoTaps + BlockSize - 1, 42 + 20 - 1 plus some spare
arm_fir_interpolate_instance_q15 m_modFilter;
q15_t m_modState[16U]; // blockSize + phaseLength - 1, 4 + 9 - 1 plus some spare
uint8_t m_poBuffer[1200U];
uint16_t m_poLen;
uint16_t m_poPtr;
uint16_t m_txDelay;
uint32_t m_count;
uint32_t m_txDelay;
void writeByte(uint8_t c);
};

View File

@ -1,5 +1,5 @@
/*
* Copyright (C) 2009-2016 by Jonathan Naylor G4KLX
* Copyright (C) 2009-2017 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -61,32 +61,32 @@ const uint8_t DMR_MS_DATA_SYNC_BYTES[] = {0x0DU, 0x5DU, 0x7FU, 0x77U, 0xFDU, 0
const uint8_t DMR_MS_VOICE_SYNC_BYTES[] = {0x07U, 0xF7U, 0xD5U, 0xDDU, 0x57U, 0xDFU, 0xD0U};
const uint8_t DMR_BS_DATA_SYNC_BYTES[] = {0x0DU, 0xFFU, 0x57U, 0xD7U, 0x5DU, 0xF5U, 0xD0U};
const uint8_t DMR_BS_VOICE_SYNC_BYTES[] = {0x07U, 0x55U, 0xFDU, 0x7DU, 0xF7U, 0x5FU, 0x70U};
const uint8_t DMR_S1_DATA_SYNC_BYTES[] = {0x0FU, 0x7FU, 0xDDU, 0x5DU, 0xDFU, 0xD5U, 0x50U};
const uint8_t DMR_S1_VOICE_SYNC_BYTES[] = {0x05U, 0xD5U, 0x77U, 0xF7U, 0x75U, 0x7FU, 0xF0U};
const uint8_t DMR_S2_DATA_SYNC_BYTES[] = {0x0DU, 0x75U, 0x57U, 0xF5U, 0xFFU, 0x7FU, 0x50U};
const uint8_t DMR_S2_VOICE_SYNC_BYTES[] = {0x07U, 0xDFU, 0xFDU, 0x5FU, 0x55U, 0xD5U, 0xF0U};
const uint8_t DMR_SYNC_BYTES_MASK[] = {0x0FU, 0xFFU, 0xFFU, 0xFFU, 0xFFU, 0xFFU, 0xF0U};
const uint64_t DMR_MS_DATA_SYNC_BITS = 0x0000D5D7F77FD757U;
const uint64_t DMR_MS_VOICE_SYNC_BITS = 0x00007F7D5DD57DFDU;
const uint64_t DMR_BS_DATA_SYNC_BITS = 0x0000DFF57D75DF5DU;
const uint64_t DMR_BS_VOICE_SYNC_BITS = 0x0000755FD7DF75F7U;
const uint64_t DMR_S1_DATA_SYNC_BITS = 0x0000F7FDD5DDFD55U;
const uint64_t DMR_S1_VOICE_SYNC_BITS = 0x00005D577F7757FFU;
const uint64_t DMR_S2_DATA_SYNC_BITS = 0x0000D7557F5FF7F5U;
const uint64_t DMR_S2_VOICE_SYNC_BITS = 0x00007DFFD5F55D5FU;
const uint64_t DMR_SYNC_BITS_MASK = 0x0000FFFFFFFFFFFFU;
const uint32_t DMR_MS_DATA_SYNC_SYMBOLS = 0x0076286EU;
const uint32_t DMR_MS_VOICE_SYNC_SYMBOLS = 0x0089D791U;
const uint32_t DMR_BS_DATA_SYNC_SYMBOLS = 0x00439B4DU;
const uint32_t DMR_BS_VOICE_SYNC_SYMBOLS = 0x00BC64B2U;
const uint32_t DMR_S1_DATA_SYNC_SYMBOLS = 0x0021751FU;
const uint32_t DMR_S1_VOICE_SYNC_SYMBOLS = 0x00DE8AE0U;
const uint32_t DMR_S2_DATA_SYNC_SYMBOLS = 0x006F8C23U;
const uint32_t DMR_S2_VOICE_SYNC_SYMBOLS = 0x009073DCU;
const uint32_t DMR_SYNC_SYMBOLS_MASK = 0x00FFFFFFU;
// D 5 D 7 F 7 7 F D 7 5 7
// 11 01 01 01 11 01 01 11 11 11 01 11 01 11 11 11 11 01 01 11 01 01 01 11
// -3 +3 +3 +3 -3 +3 +3 -3 -3 -3 +3 -3 +3 -3 -3 -3 -3 +3 +3 -3 +3 +3 +3 -3
const int8_t DMR_MS_DATA_SYNC_SYMBOLS_VALUES[] = {-3, +3, +3, +3, -3, +3, +3, -3, -3, -3, +3, -3, +3, -3, -3, -3, -3, +3, +3, -3, +3, +3, +3, -3};
// 7 F 7 D 5 D D 5 7 D F D
// 01 11 11 11 01 11 11 01 01 01 11 01 11 01 01 01 01 11 11 01 11 11 11 01
// +3 -3 -3 -3 +3 -3 -3 +3 +3 +3 -3 +3 -3 +3 +3 +3 +3 -3 -3 +3 -3 -3 -3 +3
const int8_t DMR_MS_VOICE_SYNC_SYMBOLS_VALUES[] = {+3, -3, -3, -3, +3, -3, -3, +3, +3, +3, -3, +3, -3, +3, +3, +3, +3, -3, -3, +3, -3, -3, -3, +3};
const uint8_t DT_VOICE_PI_HEADER = 0U;
const uint8_t DT_VOICE_LC_HEADER = 1U;
const uint8_t DT_TERMINATOR_WITH_LC = 2U;

View File

@ -1,5 +1,5 @@
/*
* Copyright (C) 2009-2016 by Jonathan Naylor G4KLX
* Copyright (C) 2009-2017 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -16,8 +16,6 @@
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#define WANT_DEBUG
#include "Config.h"
#include "Globals.h"
#include "DMRIdleRX.h"
@ -26,8 +24,8 @@
const q15_t SCALING_FACTOR = 19505; // Q15(0.60)
const uint8_t MAX_SYNC_SYMBOLS_ERRS = 2U;
const uint8_t MAX_SYNC_BYTES_ERRS = 3U;
const uint8_t MAX_SYNC_SYMBOLS_ERRS = 4U;
const uint8_t MAX_SYNC_BYTES_ERRS = 6U;
const uint8_t BIT_MASK_TABLE[] = {0x80U, 0x40U, 0x20U, 0x10U, 0x08U, 0x04U, 0x02U, 0x01U};
@ -84,16 +82,28 @@ void CDMRIdleRX::processSample(q15_t sample)
q15_t max = -16000;
q15_t min = 16000;
uint32_t mask = 0x00800000U;
for (uint8_t i = 0U; i < DMR_SYNC_LENGTH_SYMBOLS; i++, mask >>= 1) {
bool b = (DMR_MS_DATA_SYNC_SYMBOLS & mask) == mask;
for (uint8_t i = 0U; i < DMR_SYNC_LENGTH_SYMBOLS; i++) {
q15_t val = m_buffer[ptr];
if (m_buffer[ptr] > max)
max = m_buffer[ptr];
if (m_buffer[ptr] < min)
min = m_buffer[ptr];
if (val > max)
max = val;
if (val < min)
min = val;
corr += b ? -m_buffer[ptr] : m_buffer[ptr];
switch (DMR_MS_DATA_SYNC_SYMBOLS_VALUES[i]) {
case +3:
corr -= (val + val + val);
break;
case +1:
corr -= val;
break;
case -1:
corr += val;
break;
default: // -3
corr += (val + val + val);
break;
}
ptr += DMR_RADIO_SYMBOL_LENGTH;
if (ptr >= DMR_FRAME_LENGTH_SAMPLES)
@ -150,7 +160,7 @@ void CDMRIdleRX::processSample(q15_t sample)
}
m_endPtr = NOENDPTR;
m_maxCorr = 0U;
m_maxCorr = 0;
}
m_dataPtr++;
@ -199,4 +209,3 @@ void CDMRIdleRX::setColorCode(uint8_t colorCode)
{
m_colorCode = colorCode;
}

View File

@ -1,5 +1,5 @@
/*
* Copyright (C) 2009-2016 by Jonathan Naylor G4KLX
* Copyright (C) 2009-2017 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -16,8 +16,6 @@
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#define WANT_DEBUG
#include "Config.h"
#include "Globals.h"
#include "DMRSlotRX.h"
@ -29,10 +27,10 @@ const uint16_t SCAN_END = 920U;
const q15_t SCALING_FACTOR = 19505; // Q15(0.60)
const uint8_t MAX_SYNC_SYMBOLS_ERRS = 2U;
const uint8_t MAX_SYNC_BYTES_ERRS = 3U;
const uint8_t MAX_SYNC_SYMBOLS_ERRS = 4U;
const uint8_t MAX_SYNC_BYTES_ERRS = 6U;
const uint8_t MAX_SYNC_LOST_FRAMES = 13U;
const uint8_t MAX_SYNC_LOST_FRAMES = 26U;
const uint8_t BIT_MASK_TABLE[] = {0x80U, 0x40U, 0x20U, 0x10U, 0x08U, 0x04U, 0x02U, 0x01U};
@ -65,8 +63,7 @@ m_delay(0U),
m_state(DMRRXS_NONE),
m_n(0U),
m_type(0U),
m_rssiCount(0U),
m_rssi(0U)
m_rssi()
{
}
@ -91,7 +88,6 @@ void CDMRSlotRX::reset()
m_state = DMRRXS_NONE;
m_startPtr = 0U;
m_endPtr = NOENDPTR;
m_rssiCount = 0U;
}
bool CDMRSlotRX::processSample(q15_t sample, uint16_t rssi)
@ -105,6 +101,7 @@ bool CDMRSlotRX::processSample(q15_t sample, uint16_t rssi)
return m_state != DMRRXS_NONE;
m_buffer[m_dataPtr] = sample;
m_rssi[m_dataPtr] = rssi;
m_bitBuffer[m_bitPtr] <<= 1;
if (sample < 0)
@ -114,9 +111,6 @@ bool CDMRSlotRX::processSample(q15_t sample, uint16_t rssi)
if (m_dataPtr >= SCAN_START && m_dataPtr <= SCAN_END)
correlateSync(true);
} else {
// Grab the RSSI data during the frame
if (m_state == DMRRXS_VOICE && m_dataPtr == m_syncPtr)
m_rssi = rssi;
uint16_t min = m_syncPtr - 1U;
uint16_t max = m_syncPtr + 1U;
@ -151,7 +145,7 @@ bool CDMRSlotRX::processSample(q15_t sample, uint16_t rssi)
switch (dataType) {
case DT_DATA_HEADER:
DEBUG5("DMRSlotRX: data header found slot/pos/centre/threshold", m_slot ? 2U : 1U, m_syncPtr, centre, threshold);
serial.writeDMRData(m_slot, frame, DMR_FRAME_LENGTH_BYTES + 1U);
writeRSSIData(frame);
m_state = DMRRXS_DATA;
m_type = 0x00U;
break;
@ -160,33 +154,33 @@ bool CDMRSlotRX::processSample(q15_t sample, uint16_t rssi)
case DT_RATE_1_DATA:
if (m_state == DMRRXS_DATA) {
DEBUG5("DMRSlotRX: data payload found slot/pos/centre/threshold", m_slot ? 2U : 1U, m_syncPtr, centre, threshold);
serial.writeDMRData(m_slot, frame, DMR_FRAME_LENGTH_BYTES + 1U);
writeRSSIData(frame);
m_type = dataType;
}
break;
case DT_VOICE_LC_HEADER:
DEBUG5("DMRSlotRX: voice header found slot/pos/centre/threshold", m_slot ? 2U : 1U, m_syncPtr, centre, threshold);
serial.writeDMRData(m_slot, frame, DMR_FRAME_LENGTH_BYTES + 1U);
writeRSSIData(frame);
m_state = DMRRXS_VOICE;
break;
case DT_VOICE_PI_HEADER:
if (m_state == DMRRXS_VOICE) {
DEBUG5("DMRSlotRX: voice pi header found slot/pos/centre/threshold", m_slot ? 2U : 1U, m_syncPtr, centre, threshold);
serial.writeDMRData(m_slot, frame, DMR_FRAME_LENGTH_BYTES + 1U);
writeRSSIData(frame);
}
m_state = DMRRXS_VOICE;
break;
case DT_TERMINATOR_WITH_LC:
if (m_state == DMRRXS_VOICE) {
DEBUG5("DMRSlotRX: voice terminator found slot/pos/centre/threshold", m_slot ? 2U : 1U, m_syncPtr, centre, threshold);
serial.writeDMRData(m_slot, frame, DMR_FRAME_LENGTH_BYTES + 1U);
writeRSSIData(frame);
m_state = DMRRXS_NONE;
m_endPtr = NOENDPTR;
}
break;
default: // DT_CSBK
DEBUG5("DMRSlotRX: csbk found slot/pos/centre/threshold", m_slot ? 2U : 1U, m_syncPtr, centre, threshold);
serial.writeDMRData(m_slot, frame, DMR_FRAME_LENGTH_BYTES + 1U);
writeRSSIData(frame);
m_state = DMRRXS_NONE;
m_endPtr = NOENDPTR;
break;
@ -195,22 +189,7 @@ bool CDMRSlotRX::processSample(q15_t sample, uint16_t rssi)
} else if (m_control == CONTROL_VOICE) {
// Voice sync
DEBUG5("DMRSlotRX: voice sync found slot/pos/centre/threshold", m_slot ? 2U : 1U, m_syncPtr, centre, threshold);
#if defined(SEND_RSSI_DATA)
// Send RSSI data approximately every second
if (m_rssiCount == 2U) {
frame[34U] = (m_rssi >> 8) & 0xFFU;
frame[35U] = (m_rssi >> 0) & 0xFFU;
serial.writeDMRData(m_slot, frame, DMR_FRAME_LENGTH_BYTES + 3U);
} else {
serial.writeDMRData(m_slot, frame, DMR_FRAME_LENGTH_BYTES + 1U);
}
m_rssiCount++;
if (m_rssiCount >= 16U)
m_rssiCount = 0U;
#else
serial.writeDMRData(m_slot, frame, DMR_FRAME_LENGTH_BYTES + 1U);
#endif
writeRSSIData(frame);
m_state = DMRRXS_VOICE;
m_syncCount = 0U;
m_n = 0U;
@ -231,26 +210,12 @@ bool CDMRSlotRX::processSample(q15_t sample, uint16_t rssi)
} else {
frame[0U] = ++m_n;
}
#if defined(SEND_RSSI_DATA)
// Send RSSI data approximately every second
if (m_rssiCount == 2U) {
frame[34U] = (m_rssi >> 8) & 0xFFU;
frame[35U] = (m_rssi >> 0) & 0xFFU;
serial.writeDMRData(m_slot, frame, DMR_FRAME_LENGTH_BYTES + 3U);
} else {
serial.writeDMRData(m_slot, frame, DMR_FRAME_LENGTH_BYTES + 1U);
}
m_rssiCount++;
if (m_rssiCount >= 16U)
m_rssiCount = 0U;
#else
serial.writeDMRData(m_slot, frame, DMR_FRAME_LENGTH_BYTES + 1U);
#endif
} else if (m_state == DMRRXS_DATA) {
if (m_type != 0x00U) {
frame[0U] = CONTROL_DATA | m_type;
serial.writeDMRData(m_slot, frame, DMR_FRAME_LENGTH_BYTES + 1U);
writeRSSIData(frame);
}
}
}
@ -280,19 +245,34 @@ void CDMRSlotRX::correlateSync(bool first)
q15_t min = 16000;
q15_t max = -16000;
uint32_t mask = 0x00800000U;
for (uint8_t i = 0U; i < DMR_SYNC_LENGTH_SYMBOLS; i++, mask >>= 1) {
bool b = (DMR_MS_DATA_SYNC_SYMBOLS & mask) == mask;
for (uint8_t i = 0U; i < DMR_SYNC_LENGTH_SYMBOLS; i++) {
q15_t val = m_buffer[ptr];
if (m_buffer[ptr] > max)
max = m_buffer[ptr];
if (m_buffer[ptr] < min)
min = m_buffer[ptr];
if (val > max)
max = val;
if (val < min)
min = val;
int8_t corrVal;
if (data)
corr += b ? -m_buffer[ptr] : m_buffer[ptr];
else // if (voice)
corr += b ? m_buffer[ptr] : -m_buffer[ptr];
corrVal = DMR_MS_DATA_SYNC_SYMBOLS_VALUES[i];
else
corrVal = DMR_MS_VOICE_SYNC_SYMBOLS_VALUES[i];
switch (corrVal) {
case +3:
corr -= (val + val + val);
break;
case +1:
corr -= val;
break;
case -1:
corr += val;
break;
default: // -3
corr += (val + val + val);
break;
}
ptr += DMR_RADIO_SYMBOL_LENGTH;
}
@ -317,7 +297,6 @@ void CDMRSlotRX::correlateSync(bool first)
m_threshold[0U] = m_threshold[1U] = m_threshold[2U] = m_threshold[3U] = threshold;
m_centre[0U] = m_centre[1U] = m_centre[2U] = m_centre[3U] = centre;
m_averagePtr = 0U;
m_rssiCount = 0U;
} else {
m_threshold[m_averagePtr] = threshold;
m_centre[m_averagePtr] = centre;
@ -343,7 +322,6 @@ void CDMRSlotRX::correlateSync(bool first)
m_threshold[0U] = m_threshold[1U] = m_threshold[2U] = m_threshold[3U] = threshold;
m_centre[0U] = m_centre[1U] = m_centre[2U] = m_centre[3U] = centre;
m_averagePtr = 0U;
m_rssiCount = 0U;
} else {
m_threshold[m_averagePtr] = threshold;
m_centre[m_averagePtr] = centre;
@ -403,3 +381,22 @@ void CDMRSlotRX::setDelay(uint8_t delay)
m_delay = delay;
}
void CDMRSlotRX::writeRSSIData(uint8_t* frame)
{
#if defined(SEND_RSSI_DATA)
// Calculate RSSI average over a burst period. We don't take into account 2.5 ms at the beginning and 2.5 ms at the end
uint16_t start = m_startPtr + DMR_SYNC_LENGTH_SAMPLES / 2U;
uint32_t accum = 0U;
for (uint16_t i = 0U; i < (DMR_FRAME_LENGTH_SAMPLES - DMR_SYNC_LENGTH_SAMPLES); i++)
accum += m_rssi[start++];
uint16_t avg = accum / (DMR_FRAME_LENGTH_SAMPLES - DMR_SYNC_LENGTH_SAMPLES);
frame[34U] = (avg >> 8) & 0xFFU;
frame[35U] = (avg >> 0) & 0xFFU;
serial.writeDMRData(m_slot, frame, DMR_FRAME_LENGTH_BYTES + 3U);
#else
serial.writeDMRData(m_slot, frame, DMR_FRAME_LENGTH_BYTES + 1U);
#endif
}

View File

@ -1,5 +1,5 @@
/*
* Copyright (C) 2015,2016 by Jonathan Naylor G4KLX
* Copyright (C) 2015,2016,2017 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -62,12 +62,11 @@ private:
DMRRX_STATE m_state;
uint8_t m_n;
uint8_t m_type;
uint16_t m_rssiCount;
uint16_t m_rssi;
uint16_t m_rssi[1900U];
void correlateSync(bool first);
void samplesToBits(uint16_t start, uint8_t count, uint8_t* buffer, uint16_t offset, q15_t centre, q15_t threshold);
void writeRSSIData(uint8_t* frame);
};
#endif

147
DMRTX.cpp
View File

@ -1,6 +1,7 @@
/*
* Copyright (C) 2009-2016 by Jonathan Naylor G4KLX
* Copyright (C) 2009-2017 by Jonathan Naylor G4KLX
* Copyright (C) 2016 by Colin Durbridge G4EML
* Copyright (C) 2017 by Andy Uribe CA6JAU
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -17,23 +18,28 @@
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
// #define WANT_DEBUG
#include "Config.h"
#include "Globals.h"
#include "DMRSlotType.h"
// Generated using rcosdesign(0.2, 4, 10, 'sqrt') in MATLAB
static q15_t DMR_C4FSK_FILTER[] = {486, 39, -480, -1022, -1526, -1928, -2164, -2178, -1927, -1384, -548, 561, 1898, 3399, 4980, 6546, 7999, 9246, 10202, 10803, 11008, 10803, 10202, 9246,
7999, 6546, 4980, 3399, 1898, 561, -548, -1384, -1927, -2178, -2164, -1928, -1526, -1022, -480, 39, 486, 0};
const uint16_t DMR_C4FSK_FILTER_LEN = 42U;
// Generated using rcosdesign(0.2, 8, 10, 'sqrt') in MATLAB
static q15_t RRC_0_2_FILTER[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 850, 592, 219, -234, -720, -1179,
-1548, -1769, -1795, -1597, -1172, -544, 237, 1092, 1927, 2637,
3120, 3286, 3073, 2454, 1447, 116, -1431, -3043, -4544, -5739,
-6442, -6483, -5735, -4121, -1633, 1669, 5651, 10118, 14822,
19484, 23810, 27520, 30367, 32156, 32767, 32156, 30367, 27520,
23810, 19484, 14822, 10118, 5651, 1669, -1633, -4121, -5735,
-6483, -6442, -5739, -4544, -3043, -1431, 116, 1447, 2454,
3073, 3286, 3120, 2637, 1927, 1092, 237, -544, -1172, -1597,
-1795, -1769, -1548, -1179, -720, -234, 219, 592, 850}; // numTaps = 90, L = 10
const uint16_t RRC_0_2_FILTER_PHASE_LEN = 9U; // phaseLength = numTaps/L
const q15_t DMR_LEVELA[] = { 395, 395, 395, 395, 395, 395, 395, 395, 395, 395};
const q15_t DMR_LEVELB[] = { 131, 131, 131, 131, 131, 131, 131, 131, 131, 131};
const q15_t DMR_LEVELC[] = {-131, -131, -131, -131, -131, -131, -131, -131, -131, -131};
const q15_t DMR_LEVELD[] = {-395, -395, -395, -395, -395, -395, -395, -395, -395, -395};
const q15_t DMR_LEVELA = 1362;
const q15_t DMR_LEVELB = 454;
const q15_t DMR_LEVELC = -454;
const q15_t DMR_LEVELD = -1362;
// The PR FILL and Data Sync pattern.
// The PR FILL and BS Data Sync pattern.
const uint8_t IDLE_DATA[] =
{0x53U, 0xC2U, 0x5EU, 0xABU, 0xA8U, 0x67U, 0x1DU, 0xC7U, 0x38U, 0x3BU, 0xD9U,
0x36U, 0x00U, 0x0DU, 0xFFU, 0x57U, 0xD7U, 0x5DU, 0xF5U, 0xD0U, 0x03U, 0xF6U,
@ -53,6 +59,9 @@ const uint8_t BIT_MASK_TABLE[] = {0x80U, 0x40U, 0x20U, 0x10U, 0x08U, 0x04U, 0x02
#define WRITE_BIT1(p,i,b) p[(i)>>3] = (b) ? (p[(i)>>3] | BIT_MASK_TABLE[(i)&7]) : (p[(i)>>3] & ~BIT_MASK_TABLE[(i)&7])
#define READ_BIT1(p,i) (p[(i)>>3] & BIT_MASK_TABLE[(i)&7])
const uint32_t STARTUP_COUNT = 20U;
const uint32_t ABORT_COUNT = 6U;
CDMRTX::CDMRTX() :
m_fifo(),
m_modFilter(),
@ -66,20 +75,25 @@ m_markBuffer(),
m_poBuffer(),
m_poLen(0U),
m_poPtr(0U),
m_count(0U),
m_frameCount(0U),
m_abortCount(),
m_abort()
{
::memset(m_modState, 0x00U, 90U * sizeof(q15_t));
::memset(m_modState, 0x00U, 16U * sizeof(q15_t));
m_modFilter.numTaps = DMR_C4FSK_FILTER_LEN;
m_modFilter.L = DMR_RADIO_SYMBOL_LENGTH;
m_modFilter.phaseLength = RRC_0_2_FILTER_PHASE_LEN;
m_modFilter.pCoeffs = RRC_0_2_FILTER;
m_modFilter.pState = m_modState;
m_modFilter.pCoeffs = DMR_C4FSK_FILTER;
::memcpy(m_newShortLC, EMPTY_SHORT_LC, 12U);
::memcpy(m_shortLC, EMPTY_SHORT_LC, 12U);
m_abort[0U] = false;
m_abort[1U] = false;
m_abortCount[0U] = 0U;
m_abortCount[1U] = 0U;
}
void CDMRTX::process()
@ -207,10 +221,12 @@ uint8_t CDMRTX::writeAbort(const uint8_t* data, uint8_t length)
switch (data[0U]) {
case 1U:
m_abortCount[0U] = 0U;
m_abort[0U] = true;
return 0U;
case 2U:
m_abortCount[1U] = 0U;
m_abort[1U] = true;
return 0U;
@ -223,7 +239,9 @@ void CDMRTX::setStart(bool start)
{
m_state = start ? DMRTXSTATE_SLOT1 : DMRTXSTATE_IDLE;
m_count = 0U;
m_frameCount = 0U;
m_abortCount[0U] = 0U;
m_abortCount[1U] = 0U;
m_abort[0U] = false;
m_abort[1U] = false;
@ -232,80 +250,54 @@ void CDMRTX::setStart(bool start)
void CDMRTX::setCal(bool start)
{
m_state = start ? DMRTXSTATE_CAL : DMRTXSTATE_IDLE;
m_count = 0U;
}
void CDMRTX::writeByte(uint8_t c, uint8_t control)
{
q15_t inBuffer[DMR_RADIO_SYMBOL_LENGTH * 4U + 1U];
q15_t outBuffer[DMR_RADIO_SYMBOL_LENGTH * 4U + 1U];
q15_t inBuffer[4U];
q15_t outBuffer[DMR_RADIO_SYMBOL_LENGTH * 4U];
const uint8_t MASK = 0xC0U;
q15_t* p = inBuffer;
for (uint8_t i = 0U; i < 4U; i++, c <<= 2, p += DMR_RADIO_SYMBOL_LENGTH) {
for (uint8_t i = 0U; i < 4U; i++, c <<= 2) {
switch (c & MASK) {
case 0xC0U:
::memcpy(p, DMR_LEVELA, DMR_RADIO_SYMBOL_LENGTH * sizeof(q15_t));
inBuffer[i] = DMR_LEVELA;
break;
case 0x80U:
::memcpy(p, DMR_LEVELB, DMR_RADIO_SYMBOL_LENGTH * sizeof(q15_t));
inBuffer[i] = DMR_LEVELB;
break;
case 0x00U:
::memcpy(p, DMR_LEVELC, DMR_RADIO_SYMBOL_LENGTH * sizeof(q15_t));
inBuffer[i] = DMR_LEVELC;
break;
default:
::memcpy(p, DMR_LEVELD, DMR_RADIO_SYMBOL_LENGTH * sizeof(q15_t));
inBuffer[i] = DMR_LEVELD;
break;
}
}
uint16_t blockSize = DMR_RADIO_SYMBOL_LENGTH * 4U;
uint8_t controlBuffer[DMR_RADIO_SYMBOL_LENGTH * 4U + 1U];
uint8_t controlBuffer[DMR_RADIO_SYMBOL_LENGTH * 4U];
::memset(controlBuffer, MARK_NONE, DMR_RADIO_SYMBOL_LENGTH * 4U * sizeof(uint8_t));
controlBuffer[DMR_RADIO_SYMBOL_LENGTH * 2U] = control;
// Handle the case of the oscillator not being accurate enough
if (m_sampleCount > 0U) {
m_count += DMR_RADIO_SYMBOL_LENGTH * 4U;
::arm_fir_interpolate_q15(&m_modFilter, inBuffer, outBuffer, 4U);
if (m_count >= m_sampleCount) {
if (m_sampleInsert) {
inBuffer[DMR_RADIO_SYMBOL_LENGTH * 4U] = inBuffer[DMR_RADIO_SYMBOL_LENGTH * 4U - 1U];
for (int8_t i = DMR_RADIO_SYMBOL_LENGTH * 4U - 1; i >= 0; i--)
controlBuffer[i + 1] = controlBuffer[i];
blockSize++;
} else {
controlBuffer[DMR_RADIO_SYMBOL_LENGTH * 2U - 1U] = control;
for (uint8_t i = 0U; i < (DMR_RADIO_SYMBOL_LENGTH * 4U - 1U); i++)
controlBuffer[i] = controlBuffer[i + 1U];
blockSize--;
}
m_count -= m_sampleCount;
}
}
::arm_fir_fast_q15(&m_modFilter, inBuffer, outBuffer, blockSize);
io.write(STATE_DMR, outBuffer, blockSize, controlBuffer);
io.write(STATE_DMR, outBuffer, DMR_RADIO_SYMBOL_LENGTH * 4U, controlBuffer);
}
uint16_t CDMRTX::getSpace1() const
uint8_t CDMRTX::getSpace1() const
{
return m_fifo[0U].getSpace() / (DMR_FRAME_LENGTH_BYTES + 2U);
}
uint16_t CDMRTX::getSpace2() const
uint8_t CDMRTX::getSpace2() const
{
return m_fifo[1U].getSpace() / (DMR_FRAME_LENGTH_BYTES + 2U);
}
void CDMRTX::createData(uint8_t slotIndex)
{
if (m_fifo[slotIndex].getData()> 0U) {
if (m_fifo[slotIndex].getData() >= DMR_FRAME_LENGTH_BYTES && m_frameCount >= STARTUP_COUNT && m_abortCount[slotIndex] >= ABORT_COUNT) {
for (unsigned int i = 0U; i < DMR_FRAME_LENGTH_BYTES; i++) {
m_poBuffer[i] = m_fifo[slotIndex].get();
m_markBuffer[i] = MARK_NONE;
@ -325,17 +317,42 @@ void CDMRTX::createData(uint8_t slotIndex)
void CDMRTX::createCal()
{
// 1.2 kHz sine wave generation
if (m_modemState == STATE_DMRCAL) {
for (unsigned int i = 0U; i < DMR_FRAME_LENGTH_BYTES; i++) {
m_poBuffer[i] = 0x5FU; // +3, +3, -3, -3 pattern for deviation cal.
m_markBuffer[i] = MARK_NONE;
}
m_poLen = DMR_FRAME_LENGTH_BYTES;
}
// 80 Hz square wave generation
if (m_modemState == STATE_LFCAL) {
for (unsigned int i = 0U; i < 7U; i++) {
m_poBuffer[i] = 0x55U; // +3, +3, ... pattern
m_markBuffer[i] = MARK_NONE;
}
m_poBuffer[7U] = 0x5FU; // +3, +3, -3, -3 pattern
for (unsigned int i = 8U; i < 15U; i++) {
m_poBuffer[i] = 0xFFU; // -3, -3, ... pattern
m_markBuffer[i] = MARK_NONE;
}
m_poLen = 15U;
}
m_poPtr = 0U;
}
void CDMRTX::createCACH(uint8_t txSlotIndex, uint8_t rxSlotIndex)
{
m_frameCount++;
m_abortCount[0U]++;
m_abortCount[1U]++;
if (m_cachPtr >= 12U)
m_cachPtr = 0U;
@ -351,7 +368,9 @@ void CDMRTX::createCACH(uint8_t txSlotIndex, uint8_t rxSlotIndex)
m_markBuffer[1U] = MARK_NONE;
m_markBuffer[2U] = rxSlotIndex == 1U ? MARK_SLOT1 : MARK_SLOT2;
bool at = m_fifo[rxSlotIndex].getData() > 0U;
bool at = false;
if (m_frameCount >= STARTUP_COUNT)
at = m_fifo[rxSlotIndex].getData() > 0U;
bool tc = txSlotIndex == 1U;
bool ls0 = true; // For 1 and 2
bool ls1 = true;
@ -387,3 +406,17 @@ void CDMRTX::setColorCode(uint8_t colorCode)
slotType.encode(colorCode, DT_IDLE, m_idle);
}
void CDMRTX::resetFifo1()
{
m_fifo[0U].reset();
}
void CDMRTX::resetFifo2()
{
m_fifo[1U].reset();
}
uint32_t CDMRTX::getFrameCount()
{
return m_frameCount;
}

17
DMRTX.h
View File

@ -1,5 +1,5 @@
/*
* Copyright (C) 2015,2016 by Jonathan Naylor G4KLX
* Copyright (C) 2015,2016,2017 by Jonathan Naylor G4KLX
* Copyright (C) 2016 by Colin Durbridge G4EML
*
* This program is free software; you can redistribute it and/or modify
@ -49,15 +49,19 @@ public:
void process();
uint16_t getSpace1() const;
uint16_t getSpace2() const;
void resetFifo1();
void resetFifo2();
uint32_t getFrameCount();
uint8_t getSpace1() const;
uint8_t getSpace2() const;
void setColorCode(uint8_t colorCode);
private:
CSerialRB m_fifo[2U];
arm_fir_instance_q15 m_modFilter;
q15_t m_modState[90U]; // NoTaps + BlockSize - 1, 42 + 20 - 1 plus some spare
arm_fir_interpolate_instance_q15 m_modFilter;
q15_t m_modState[16U]; // blockSize + phaseLength - 1, 4 + 9 - 1 plus some spare
DMRTXSTATE m_state;
uint8_t m_idle[DMR_FRAME_LENGTH_BYTES];
uint8_t m_cachPtr;
@ -67,7 +71,8 @@ private:
uint8_t m_poBuffer[40U];
uint16_t m_poLen;
uint16_t m_poPtr;
uint32_t m_count;
uint32_t m_frameCount;
uint32_t m_abortCount[2U];
bool m_abort[2U];
void createData(uint8_t slotIndex);

View File

@ -1,5 +1,5 @@
/*
* Copyright (C) 2009-2015 by Jonathan Naylor G4KLX
* Copyright (C) 2009-2015,2017 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -19,26 +19,46 @@
#if !defined(DSTARDEFINES_H)
#define DSTARDEFINES_H
const unsigned int DSTAR_RADIO_BIT_LENGTH = 10U; // At 48 kHz sample rate
const unsigned int DSTAR_RADIO_SYMBOL_LENGTH = 10U; // At 48 kHz sample rate
const unsigned int DSTAR_HEADER_LENGTH_BYTES = 41U;
const unsigned int DSTAR_HEADER_LENGTH_BITS = DSTAR_HEADER_LENGTH_BYTES * 8U;
const unsigned int DSTAR_FEC_SECTION_LENGTH_BYTES = 83U;
const unsigned int DSTAR_FEC_SECTION_LENGTH_BITS = 660U;
const unsigned int DSTAR_FEC_SECTION_LENGTH_SYMBOLS = 660U;
const unsigned int DSTAR_FEC_SECTION_LENGTH_SAMPLES = DSTAR_FEC_SECTION_LENGTH_SYMBOLS * DSTAR_RADIO_SYMBOL_LENGTH;
const unsigned int DSTAR_DATA_LENGTH_BYTES = 12U;
const unsigned int DSTAR_DATA_LENGTH_BITS = DSTAR_DATA_LENGTH_BYTES * 8U;
const unsigned int DSTAR_DATA_LENGTH_SYMBOLS = DSTAR_DATA_LENGTH_BYTES * 8U;
const unsigned int DSTAR_DATA_LENGTH_SAMPLES = DSTAR_DATA_LENGTH_SYMBOLS * DSTAR_RADIO_SYMBOL_LENGTH;
const uint8_t DSTAR_EOT_BYTES[] = {0x55, 0x55, 0x55, 0x55, 0xC8, 0x7A, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
const unsigned int DSTAR_EOT_LENGTH_BYTES = 6U;
const unsigned int DSTAR_EOT_LENGTH_BITS = DSTAR_EOT_LENGTH_BYTES * 8U;
const unsigned int DSTAR_END_SYNC_LENGTH_BYTES = 6U;
const unsigned int DSTAR_END_SYNC_LENGTH_BITS = DSTAR_END_SYNC_LENGTH_BYTES * 8U;
const uint8_t DSTAR_DATA_SYNC_LENGTH_BYTES = 3U;
const uint8_t DSTAR_DATA_SYNC_LENGTH_BITS = DSTAR_DATA_SYNC_LENGTH_BYTES * 8U;
const unsigned int DSTAR_FRAME_SYNC_LENGTH_BYTES = 3U;
const unsigned int DSTAR_FRAME_SYNC_LENGTH_SYMBOLS = DSTAR_FRAME_SYNC_LENGTH_BYTES * 8U;
const unsigned int DSTAR_FRAME_SYNC_LENGTH_SAMPLES = DSTAR_FRAME_SYNC_LENGTH_SYMBOLS * DSTAR_RADIO_SYMBOL_LENGTH;
const unsigned int DSTAR_DATA_SYNC_LENGTH_BYTES = 3U;
const unsigned int DSTAR_DATA_SYNC_LENGTH_SYMBOLS = DSTAR_DATA_SYNC_LENGTH_BYTES * 8U;
const unsigned int DSTAR_DATA_SYNC_LENGTH_SAMPLES = DSTAR_DATA_SYNC_LENGTH_SYMBOLS * DSTAR_RADIO_SYMBOL_LENGTH;
const uint8_t DSTAR_DATA_SYNC_BYTES[] = {0x9E, 0x8D, 0x32, 0x88, 0x26, 0x1A, 0x3F, 0x61, 0xE8, 0x55, 0x2D, 0x16};
// D-Star bit order version of 0x55 0x6E 0x0A
const uint32_t DSTAR_FRAME_SYNC_DATA = 0x00557650U;
const uint32_t DSTAR_FRAME_SYNC_MASK = 0x00FFFFFFU;
const bool DSTAR_FRAME_SYNC_SYMBOLS[] = {false, true, false, true, false, true, false, true, false, true, true, true, false, true, true, false, false, true, false, true, false, false, false, false};
// D-Star bit order version of 0x55 0x2D 0x16
const uint32_t DSTAR_DATA_SYNC_DATA = 0x00AAB468U;
const uint32_t DSTAR_DATA_SYNC_MASK = 0x00FFFFFFU;
const bool DSTAR_DATA_SYNC_SYMBOLS[] = {true, false, true, false, true, false, true, false, true, false, true, true, false, true, false, false, false, true, true, false, true, false, false, false};
// D-Star bit order version of 0x55 0x55 0xC8 0x7A
const uint32_t DSTAR_END_SYNC_DATA = 0xAAAA135EU;
const uint32_t DSTAR_END_SYNC_MASK = 0xFFFFFFFFU;
const uint8_t DSTAR_END_SYNC_BYTES[] = {0x55, 0x55, 0x55, 0x55, 0xC8, 0x7A, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
const uint8_t DSTAR_SLOW_DATA_TYPE_TEXT = 0x40U;
const uint8_t DSTAR_SLOW_DATA_TYPE_HEADER = 0x50U;

View File

@ -1,5 +1,6 @@
/*
* Copyright (C) 2009-2016 by Jonathan Naylor G4KLX
* Copyright (C) 2009-2017 by Jonathan Naylor G4KLX
* Copyright (C) 2017 by Andy Uribe CA6JAU
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -16,31 +17,17 @@
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
// #define WANT_DEBUG
#include "Config.h"
#include "Globals.h"
#include "DStarRX.h"
#include "Utils.h"
const unsigned int BUFFER_LENGTH = 200U;
const uint32_t PLLMAX = 0x10000U;
const uint32_t PLLINC = PLLMAX / DSTAR_RADIO_BIT_LENGTH;
const uint32_t INC = PLLINC / 32U;
const unsigned int MAX_SYNC_BITS = 50U * DSTAR_DATA_LENGTH_BITS;
const unsigned int SYNC_POS = 21U * DSTAR_DATA_LENGTH_BITS;
const unsigned int SYNC_SCAN_START = SYNC_POS - 3U;
const unsigned int SYNC_SCAN_END = SYNC_POS + 3U;
const q15_t THRESHOLD = 0;
const unsigned int MAX_FRAMES = 150U;
// D-Star bit order version of 0x55 0x55 0x6E 0x0A
const uint32_t FRAME_SYNC_DATA = 0x00557650U;
const uint32_t FRAME_SYNC_MASK = 0x00FFFFFFU;
const uint8_t FRAME_SYNC_ERRS = 2U;
const uint8_t FRAME_SYNC_ERRS = 1U;
// D-Star bit order version of 0x55 0x2D 0x16
const uint32_t DATA_SYNC_DATA = 0x00AAB468U;
@ -50,7 +37,7 @@ const uint8_t DATA_SYNC_ERRS = 2U;
// D-Star bit order version of 0x55 0x55 0xC8 0x7A
const uint32_t END_SYNC_DATA = 0xAAAA135EU;
const uint32_t END_SYNC_MASK = 0xFFFFFFFFU;
const uint8_t END_SYNC_ERRS = 3U;
const uint8_t END_SYNC_ERRS = 1U;
const uint8_t BIT_MASK_TABLE0[] = {0x7FU, 0xBFU, 0xDFU, 0xEFU, 0xF7U, 0xFBU, 0xFDU, 0xFEU};
const uint8_t BIT_MASK_TABLE1[] = {0x80U, 0x40U, 0x20U, 0x10U, 0x08U, 0x04U, 0x02U, 0x01U};
@ -244,14 +231,24 @@ const uint16_t CCITT_TABLE[] = {
0xf78fU, 0xe606U, 0xd49dU, 0xc514U, 0xb1abU, 0xa022U, 0x92b9U, 0x8330U,
0x7bc7U, 0x6a4eU, 0x58d5U, 0x495cU, 0x3de3U, 0x2c6aU, 0x1ef1U, 0x0f78U};
const uint16_t NOENDPTR = 9999U;
CDStarRX::CDStarRX() :
m_pll(0U),
m_prev(false),
m_rxState(DSRXS_NONE),
m_patternBuffer(0x00U),
m_rxBuffer(),
m_rxBufferBits(0U),
m_dataBits(0U),
m_bitBuffer(),
m_headerBuffer(),
m_dataBuffer(),
m_bitPtr(0U),
m_headerPtr(0U),
m_dataPtr(0U),
m_startPtr(NOENDPTR),
m_syncPtr(NOENDPTR),
m_minSyncPtr(NOENDPTR),
m_maxSyncPtr(NOENDPTR),
m_maxFrameCorr(0),
m_maxDataCorr(0),
m_frameCount(0U),
m_countdown(0U),
m_mar(0U),
m_pathMetric(),
m_pathMemory0(),
@ -259,142 +256,146 @@ m_pathMemory1(),
m_pathMemory2(),
m_pathMemory3(),
m_fecOutput(),
m_samples(),
m_samplesPtr(0U)
m_rssiAccum(0U),
m_rssiCount(0U)
{
}
void CDStarRX::reset()
{
m_pll = 0U;
m_prev = false;
m_rxState = DSRXS_NONE;
m_patternBuffer = 0x00U;
m_rxBufferBits = 0U;
m_dataBits = 0U;
m_samplesPtr = 0U;
m_headerPtr = 0U;
m_dataPtr = 0U;
m_bitPtr = 0U;
m_maxFrameCorr = 0;
m_maxDataCorr = 0;
m_startPtr = NOENDPTR;
m_syncPtr = NOENDPTR;
m_minSyncPtr = NOENDPTR;
m_maxSyncPtr = NOENDPTR;
m_frameCount = 0U;
m_countdown = 0U;
m_rssiAccum = 0U;
m_rssiCount = 0U;
}
void CDStarRX::samples(const q15_t* samples, uint8_t length)
void CDStarRX::samples(const q15_t* samples, const uint16_t* rssi, uint8_t length)
{
for (uint16_t i = 0U; i < length; i++) {
m_samples[m_samplesPtr] = samples[i];
m_rssiAccum += rssi[i];
m_rssiCount++;
bool bit = samples[i] < THRESHOLD;
q15_t sample = samples[i];
if (bit != m_prev) {
if (m_pll < (PLLMAX / 2U))
m_pll += INC;
else
m_pll -= INC;
}
m_bitBuffer[m_bitPtr] <<= 1;
if (sample < 0)
m_bitBuffer[m_bitPtr] |= 0x01U;
m_prev = bit;
m_pll += PLLINC;
if (m_pll >= PLLMAX) {
m_pll -= PLLMAX;
m_dataBuffer[m_dataPtr] = sample;
switch (m_rxState) {
case DSRXS_NONE:
processNone(bit);
break;
case DSRXS_HEADER:
processHeader(bit);
processHeader(sample);
break;
case DSRXS_DATA:
processData(bit);
processData();
break;
default:
processNone(sample);
break;
}
}
m_samplesPtr++;
if (m_samplesPtr >= DSTAR_DATA_SYNC_LENGTH_BITS)
m_samplesPtr = 0U;
m_dataPtr++;
if (m_dataPtr >= DSTAR_DATA_LENGTH_SAMPLES)
m_dataPtr = 0U;
m_bitPtr++;
if (m_bitPtr >= DSTAR_RADIO_SYMBOL_LENGTH)
m_bitPtr = 0U;
}
}
void CDStarRX::processNone(bool bit)
void CDStarRX::processNone(q15_t sample)
{
m_patternBuffer <<= 1;
if (bit)
m_patternBuffer |= 0x01U;
// Fuzzy matching of the frame sync sequence
if (countBits32((m_patternBuffer & FRAME_SYNC_MASK) ^ FRAME_SYNC_DATA) <= FRAME_SYNC_ERRS) {
DEBUG1("DStarRX: found frame sync in None");
bool ret = correlateFrameSync();
if (ret) {
m_countdown = 5U;
::memset(m_rxBuffer, 0x00U, DSTAR_FEC_SECTION_LENGTH_BYTES);
m_rxBufferBits = 0U;
m_headerBuffer[m_headerPtr] = sample;
m_headerPtr++;
m_rssiAccum = 0U;
m_rssiCount = 0U;
m_rxState = DSRXS_HEADER;
return;
}
// Exact matching of the data sync bit sequence
if (countBits32((m_patternBuffer & DATA_SYNC_MASK) ^ DATA_SYNC_DATA) == 0U) {
// Fuzzy matching of the data sync bit sequence
ret = correlateDataSync();
if (ret) {
DEBUG1("DStarRX: found data sync in None");
io.setDecode(true);
io.setADCDetection(true);
serial.writeDStarData(DSTAR_DATA_SYNC_BYTES, DSTAR_DATA_LENGTH_BYTES);
::memset(m_rxBuffer, 0x00U, DSTAR_DATA_LENGTH_BYTES + 2U);
m_rxBufferBits = 0U;
m_dataBits = 0U;
m_rxState = DSRXS_DATA;
return;
}
}
void CDStarRX::processHeader(bool bit)
void CDStarRX::processHeader(q15_t sample)
{
m_patternBuffer <<= 1;
if (bit)
m_patternBuffer |= 0x01U;
if (m_countdown > 0U) {
correlateFrameSync();
m_countdown--;
}
WRITE_BIT2(m_rxBuffer, m_rxBufferBits, bit);
m_rxBufferBits++;
m_headerBuffer[m_headerPtr] = sample;
m_headerPtr++;
// A full FEC header
if (m_rxBufferBits == DSTAR_FEC_SECTION_LENGTH_BITS) {
// Process the scrambling, interleaving and FEC, then return if the chcksum was correct
unsigned char header[DSTAR_HEADER_LENGTH_BYTES];
bool ok = rxHeader(m_rxBuffer, header);
if (ok) {
if (m_headerPtr == (DSTAR_FEC_SECTION_LENGTH_SAMPLES + DSTAR_RADIO_SYMBOL_LENGTH)) {
uint8_t buffer[DSTAR_FEC_SECTION_LENGTH_BYTES];
samplesToBits(m_headerBuffer, DSTAR_RADIO_SYMBOL_LENGTH, DSTAR_FEC_SECTION_LENGTH_SYMBOLS, buffer, DSTAR_FEC_SECTION_LENGTH_SAMPLES);
// Process the scrambling, interleaving and FEC, then return true if the chcksum was correct
uint8_t header[DSTAR_HEADER_LENGTH_BYTES];
bool ok = rxHeader(buffer, header);
if (!ok) {
// The checksum failed, return to looking for syncs
m_rxState = DSRXS_NONE;
m_maxFrameCorr = 0;
m_maxDataCorr = 0;
} else {
io.setDecode(true);
io.setADCDetection(true);
serial.writeDStarHeader(header, DSTAR_HEADER_LENGTH_BYTES);
writeRSSIHeader(header);
}
}
::memset(m_rxBuffer, 0x00U, DSTAR_DATA_LENGTH_BYTES + 2U);
m_rxBufferBits = 0U;
// Ready to start the first data section
if (m_headerPtr == (DSTAR_FEC_SECTION_LENGTH_SAMPLES + 2U * DSTAR_RADIO_SYMBOL_LENGTH)) {
m_frameCount = 0U;
m_dataPtr = 0U;
m_startPtr = 952U;
m_syncPtr = 942U;
m_maxSyncPtr = 944U;
m_minSyncPtr = 940U;
DEBUG5("DStarRX: calc start/sync/max/min", m_startPtr, m_syncPtr, m_maxSyncPtr, m_minSyncPtr);
m_rxState = DSRXS_DATA;
m_dataBits = SYNC_POS - DSTAR_DATA_LENGTH_BITS + 1U;
} else {
// The checksum failed, return to looking for syncs
m_rxState = DSRXS_NONE;
}
}
}
void CDStarRX::processData(bool bit)
void CDStarRX::processData()
{
m_patternBuffer <<= 1;
if (bit)
m_patternBuffer |= 0x01U;
WRITE_BIT2(m_rxBuffer, m_rxBufferBits, bit);
m_rxBufferBits++;
// Fuzzy matching of the end frame sequences
if (countBits32((m_patternBuffer & END_SYNC_MASK) ^ END_SYNC_DATA) <= END_SYNC_ERRS) {
if (countBits32((m_bitBuffer[m_bitPtr] & DSTAR_END_SYNC_MASK) ^ DSTAR_END_SYNC_DATA) <= END_SYNC_ERRS) {
DEBUG1("DStarRX: Found end sync in Data");
io.setDecode(false);
@ -402,44 +403,24 @@ void CDStarRX::processData(bool bit)
serial.writeDStarEOT();
m_maxFrameCorr = 0;
m_maxDataCorr = 0;
m_rxState = DSRXS_NONE;
return;
}
// Fuzzy matching of the data sync bit sequence
bool syncSeen = false;
if (m_dataBits >= SYNC_SCAN_START && m_dataBits <= (SYNC_POS + 1U)) {
if (countBits32((m_patternBuffer & DATA_SYNC_MASK) ^ DATA_SYNC_DATA) <= DATA_SYNC_ERRS) {
#if defined(WANT_DEBUG)
if (m_dataBits < SYNC_POS)
DEBUG2("DStarRX: found data sync in Data, early", SYNC_POS - m_dataBits);
else
DEBUG1("DStarRX: found data sync in Data");
#endif
m_rxBufferBits = DSTAR_DATA_LENGTH_BITS;
m_dataBits = 0U;
syncSeen = true;
if (m_minSyncPtr < m_maxSyncPtr) {
if (m_dataPtr >= m_minSyncPtr && m_dataPtr <= m_maxSyncPtr)
correlateDataSync();
} else {
if (m_dataPtr >= m_minSyncPtr || m_dataPtr <= m_maxSyncPtr)
correlateDataSync();
}
}
// Check to see if the sync is arriving late
if (m_dataBits == SYNC_POS) {
for (uint8_t i = 1U; i <= 3U; i++) {
uint32_t syncMask = DATA_SYNC_MASK >> i;
uint32_t syncData = DATA_SYNC_DATA >> i;
if (countBits32((m_patternBuffer & syncMask) ^ syncData) <= DATA_SYNC_ERRS) {
DEBUG2("DStarRX: found data sync in Data, late", i);
m_rxBufferBits -= i;
m_dataBits -= i;
break;
}
}
}
m_dataBits++;
// We've not seen a data sync for too long, signal RXLOST and change to RX_NONE
if (m_dataBits >= MAX_SYNC_BITS) {
if (m_frameCount >= MAX_FRAMES) {
DEBUG1("DStarRX: data sync timed out, lost lock");
io.setDecode(false);
@ -447,23 +428,176 @@ void CDStarRX::processData(bool bit)
serial.writeDStarLost();
m_maxFrameCorr = 0;
m_maxDataCorr = 0;
m_rxState = DSRXS_NONE;
return;
}
// Send a data frame to the host if the required number of bits have been received, or if a data sync has been seen
if (m_rxBufferBits == DSTAR_DATA_LENGTH_BITS) {
if (syncSeen) {
m_rxBuffer[9U] = DSTAR_DATA_SYNC_BYTES[9U];
m_rxBuffer[10U] = DSTAR_DATA_SYNC_BYTES[10U];
m_rxBuffer[11U] = DSTAR_DATA_SYNC_BYTES[11U];
// Send a data frame to the host if the required number of bits have been received
if (m_dataPtr == m_maxSyncPtr) {
uint8_t buffer[DSTAR_DATA_LENGTH_BYTES + 2U];
samplesToBits(m_dataBuffer, m_startPtr, DSTAR_DATA_LENGTH_SYMBOLS, buffer, DSTAR_DATA_LENGTH_SAMPLES);
if ((m_frameCount % 21U) == 0U) {
if (m_frameCount == 0U) {
buffer[9U] = DSTAR_DATA_SYNC_BYTES[9U];
buffer[10U] = DSTAR_DATA_SYNC_BYTES[10U];
buffer[11U] = DSTAR_DATA_SYNC_BYTES[11U];
DEBUG5("DStarRX: found start/sync/max/min", m_startPtr, m_syncPtr, m_maxSyncPtr, m_minSyncPtr);
}
serial.writeDStarData(m_rxBuffer, DSTAR_DATA_LENGTH_BYTES);
writeRSSIData(buffer);
} else {
serial.writeDStarData(buffer, DSTAR_DATA_LENGTH_BYTES);
}
// Start the next frame
::memset(m_rxBuffer, 0x00U, DSTAR_DATA_LENGTH_BYTES + 2U);
m_rxBufferBits = 0U;
m_frameCount++;
m_maxFrameCorr = 0;
m_maxDataCorr = 0;
}
}
void CDStarRX::writeRSSIHeader(unsigned char* header)
{
#if defined(SEND_RSSI_DATA)
if (m_rssiCount > 0U) {
uint16_t rssi = m_rssiAccum / m_rssiCount;
header[41U] = (rssi >> 8) & 0xFFU;
header[42U] = (rssi >> 0) & 0xFFU;
serial.writeDStarHeader(header, DSTAR_HEADER_LENGTH_BYTES + 2U);
} else {
serial.writeDStarHeader(header, DSTAR_HEADER_LENGTH_BYTES + 0U);
}
#else
serial.writeDStarHeader(header, DSTAR_HEADER_LENGTH_BYTES + 0U);
#endif
m_rssiAccum = 0U;
m_rssiCount = 0U;
}
void CDStarRX::writeRSSIData(unsigned char* data)
{
#if defined(SEND_RSSI_DATA)
if (m_rssiCount > 0U) {
uint16_t rssi = m_rssiAccum / m_rssiCount;
data[12U] = (rssi >> 8) & 0xFFU;
data[13U] = (rssi >> 0) & 0xFFU;
serial.writeDStarData(data, DSTAR_DATA_LENGTH_BYTES + 2U);
} else {
serial.writeDStarData(data, DSTAR_DATA_LENGTH_BYTES + 0U);
}
#else
serial.writeDStarData(data, DSTAR_DATA_LENGTH_BYTES + 0U);
#endif
m_rssiAccum = 0U;
m_rssiCount = 0U;
}
bool CDStarRX::correlateFrameSync()
{
if (countBits32((m_bitBuffer[m_bitPtr] & DSTAR_FRAME_SYNC_MASK) ^ DSTAR_FRAME_SYNC_DATA) <= FRAME_SYNC_ERRS) {
uint16_t ptr = m_dataPtr + DSTAR_DATA_LENGTH_SAMPLES - DSTAR_FRAME_SYNC_LENGTH_SAMPLES + DSTAR_RADIO_SYMBOL_LENGTH;
if (ptr >= DSTAR_DATA_LENGTH_SAMPLES)
ptr -= DSTAR_DATA_LENGTH_SAMPLES;
q31_t corr = 0;
for (uint8_t i = 0U; i < DSTAR_FRAME_SYNC_LENGTH_SYMBOLS; i++) {
q15_t val = m_dataBuffer[ptr];
if (DSTAR_FRAME_SYNC_SYMBOLS[i])
corr -= val;
else
corr += val;
ptr += DSTAR_RADIO_SYMBOL_LENGTH;
if (ptr >= DSTAR_DATA_LENGTH_SAMPLES)
ptr -= DSTAR_DATA_LENGTH_SAMPLES;
}
if (corr > m_maxFrameCorr) {
m_maxFrameCorr = corr;
m_headerPtr = 0U;
return true;
}
}
return false;
}
bool CDStarRX::correlateDataSync()
{
uint8_t maxErrs = 0U;
if (m_rxState == DSRXS_DATA)
maxErrs = DATA_SYNC_ERRS;
if (countBits32((m_bitBuffer[m_bitPtr] & DSTAR_DATA_SYNC_MASK) ^ DSTAR_DATA_SYNC_DATA) <= maxErrs) {
uint16_t ptr = m_dataPtr + DSTAR_DATA_LENGTH_SAMPLES - DSTAR_DATA_SYNC_LENGTH_SAMPLES + DSTAR_RADIO_SYMBOL_LENGTH;
if (ptr >= DSTAR_DATA_LENGTH_SAMPLES)
ptr -= DSTAR_DATA_LENGTH_SAMPLES;
q31_t corr = 0;
for (uint8_t i = 0U; i < DSTAR_DATA_SYNC_LENGTH_SYMBOLS; i++) {
q15_t val = m_dataBuffer[ptr];
if (DSTAR_DATA_SYNC_SYMBOLS[i])
corr -= val;
else
corr += val;
ptr += DSTAR_RADIO_SYMBOL_LENGTH;
if (ptr >= DSTAR_DATA_LENGTH_SAMPLES)
ptr -= DSTAR_DATA_LENGTH_SAMPLES;
}
if (corr > m_maxDataCorr) {
m_maxDataCorr = corr;
m_frameCount = 0U;
m_syncPtr = m_dataPtr;
m_startPtr = m_dataPtr + DSTAR_RADIO_SYMBOL_LENGTH;
if (m_startPtr >= DSTAR_DATA_LENGTH_SAMPLES)
m_startPtr -= DSTAR_DATA_LENGTH_SAMPLES;
m_maxSyncPtr = m_syncPtr + 1U;
if (m_maxSyncPtr >= DSTAR_DATA_LENGTH_SAMPLES)
m_maxSyncPtr -= DSTAR_DATA_LENGTH_SAMPLES;
m_minSyncPtr = m_syncPtr + DSTAR_DATA_LENGTH_SAMPLES - 1U;
if (m_minSyncPtr >= DSTAR_DATA_LENGTH_SAMPLES)
m_minSyncPtr -= DSTAR_DATA_LENGTH_SAMPLES;
return true;
}
}
return false;
}
void CDStarRX::samplesToBits(const q15_t* inBuffer, uint16_t start, uint16_t count, uint8_t* outBuffer, uint16_t limit)
{
for (uint16_t i = 0U; i < count; i++) {
q15_t sample = inBuffer[start];
if (sample < 0)
WRITE_BIT2(outBuffer, i, true);
else
WRITE_BIT2(outBuffer, i, false);
start += DSTAR_RADIO_SYMBOL_LENGTH;
if (start >= limit)
start -= limit;
}
}
@ -682,4 +816,3 @@ bool CDStarRX::checksum(const uint8_t* header) const
return crc8[0U] == header[DSTAR_HEADER_LENGTH_BYTES - 2U] && crc8[1U] == header[DSTAR_HEADER_LENGTH_BYTES - 1U];
}

View File

@ -1,5 +1,5 @@
/*
* Copyright (C) 2015,2016 by Jonathan Naylor G4KLX
* Copyright (C) 2015,2016,2017 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -32,18 +32,26 @@ class CDStarRX {
public:
CDStarRX();
void samples(const q15_t* samples, uint8_t length);
void samples(const q15_t* samples, const uint16_t* rssi, uint8_t length);
void reset();
private:
uint32_t m_pll;
bool m_prev;
DSRX_STATE m_rxState;
uint32_t m_patternBuffer;
uint8_t m_rxBuffer[100U];
unsigned int m_rxBufferBits;
unsigned int m_dataBits;
uint32_t m_bitBuffer[DSTAR_RADIO_SYMBOL_LENGTH];
q15_t m_headerBuffer[DSTAR_FEC_SECTION_LENGTH_SAMPLES + 2U * DSTAR_RADIO_SYMBOL_LENGTH];
q15_t m_dataBuffer[DSTAR_DATA_LENGTH_SAMPLES];
uint16_t m_bitPtr;
uint16_t m_headerPtr;
uint16_t m_dataPtr;
uint16_t m_startPtr;
uint16_t m_syncPtr;
uint16_t m_minSyncPtr;
uint16_t m_maxSyncPtr;
q31_t m_maxFrameCorr;
q31_t m_maxDataCorr;
uint16_t m_frameCount;
uint8_t m_countdown;
unsigned int m_mar;
int m_pathMetric[4U];
unsigned int m_pathMemory0[42U];
@ -51,12 +59,17 @@ private:
unsigned int m_pathMemory2[42U];
unsigned int m_pathMemory3[42U];
uint8_t m_fecOutput[42U];
q15_t m_samples[DSTAR_DATA_SYNC_LENGTH_BITS];
uint8_t m_samplesPtr;
uint32_t m_rssiAccum;
uint16_t m_rssiCount;
void processNone(bool bit);
void processHeader(bool bit);
void processData(bool bit);
void processNone(q15_t sample);
void processHeader(q15_t sample);
void processData();
bool correlateFrameSync();
bool correlateDataSync();
void samplesToBits(const q15_t* inBuffer, uint16_t start, uint16_t count, uint8_t* outBuffer, uint16_t limit);
void writeRSSIHeader(unsigned char* header);
void writeRSSIData(unsigned char* data);
bool rxHeader(uint8_t* in, uint8_t* out);
void acs(int* metric);
void viterbiDecode(int* data);

View File

@ -1,5 +1,6 @@
/*
* Copyright (C) 2009-2016 by Jonathan Naylor G4KLX
* Copyright (C) 2009-2017 by Jonathan Naylor G4KLX
* Copyright (C) 2017 by Andy Uribe CA6JAU
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -16,8 +17,6 @@
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#define WANT_DEBUG
#include "Config.h"
#include "Globals.h"
#include "DStarTX.h"
@ -28,12 +27,14 @@ const uint8_t BIT_SYNC = 0xAAU;
const uint8_t FRAME_SYNC[] = {0xEAU, 0xA6U, 0x00U};
// Generated using gaussfir(0.5, 4, 10) in MATLAB
static q15_t DSTAR_GMSK_FILTER[] = {1, 4, 15, 52, 151, 380, 832, 1579, 2599, 3710, 4594, 4933, 4594, 3710, 2599, 1579, 832, 380, 151, 52, 15, 4, 1, 0};
const uint16_t DSTAR_GMSK_FILTER_LEN = 24U;
// Generated using gaussfir(0.35, 1, 10) in MATLAB
static q15_t GAUSSIAN_0_35_FILTER[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 1001, 1942, 3514, 5930,
9333, 13699, 18751, 23938, 28499, 31644, 32767, 31644,
28499, 23938, 18751, 13699, 9333, 5930, 3514, 1942, 1001}; // numTaps = 30, L = 10
const uint16_t GAUSSIAN_0_35_FILTER_PHASE_LEN = 3U; // phaseLength = numTaps/L
const q15_t DSTAR_LEVEL0[] = {-808, -808, -808, -808, -808, -808, -808, -808, -808, -808};
const q15_t DSTAR_LEVEL1[] = { 808, 808, 808, 808, 808, 808, 808, 808, 808, 808};
const q15_t DSTAR_LEVEL0 = -841;
const q15_t DSTAR_LEVEL1 = 841;
const uint8_t BIT_MASK_TABLE[] = {0x80U, 0x40U, 0x20U, 0x10U, 0x08U, 0x04U, 0x02U, 0x01U};
@ -195,14 +196,14 @@ m_modState(),
m_poBuffer(),
m_poLen(0U),
m_poPtr(0U),
m_txDelay(60U), // 100ms
m_count(0U)
m_txDelay(60U) // 100ms
{
::memset(m_modState, 0x00U, 80U * sizeof(q15_t));
::memset(m_modState, 0x00U, 15U * sizeof(q15_t));
m_modFilter.numTaps = DSTAR_GMSK_FILTER_LEN;
m_modFilter.L = DSTAR_RADIO_SYMBOL_LENGTH;
m_modFilter.phaseLength = GAUSSIAN_0_35_FILTER_PHASE_LEN;
m_modFilter.pCoeffs = GAUSSIAN_0_35_FILTER;
m_modFilter.pState = m_modState;
m_modFilter.pCoeffs = DSTAR_GMSK_FILTER;
}
void CDStarTX::process()
@ -214,8 +215,6 @@ void CDStarTX::process()
if (type == DSTAR_HEADER && m_poLen == 0U) {
if (!m_tx) {
m_count = 0U;
for (uint16_t i = 0U; i < m_txDelay; i++)
m_poBuffer[m_poLen++] = BIT_SYNC;
} else {
@ -241,9 +240,6 @@ void CDStarTX::process()
}
if (type == DSTAR_DATA && m_poLen == 0U) {
if (!m_tx)
m_count = 0U;
// Pop the type byte off
m_buffer.get();
@ -258,8 +254,8 @@ void CDStarTX::process()
m_buffer.get();
for (uint8_t j = 0U; j < 3U; j++) {
for (uint8_t i = 0U; i < DSTAR_EOT_LENGTH_BYTES; i++)
m_poBuffer[m_poLen++] = DSTAR_EOT_BYTES[i];
for (uint8_t i = 0U; i < DSTAR_END_SYNC_LENGTH_BYTES; i++)
m_poBuffer[m_poLen++] = DSTAR_END_SYNC_BYTES[i];
}
m_poPtr = 0U;
@ -268,11 +264,11 @@ void CDStarTX::process()
if (m_poLen > 0U) {
uint16_t space = io.getSpace();
while (space > (8U * DSTAR_RADIO_BIT_LENGTH)) {
while (space > (8U * DSTAR_RADIO_SYMBOL_LENGTH)) {
uint8_t c = m_poBuffer[m_poPtr++];
writeByte(c);
space -= 8U * DSTAR_RADIO_BIT_LENGTH;
space -= 8U * DSTAR_RADIO_SYMBOL_LENGTH;
if (m_poPtr >= m_poLen) {
m_poPtr = 0U;
@ -417,50 +413,34 @@ void CDStarTX::txHeader(const uint8_t* in, uint8_t* out) const
void CDStarTX::writeByte(uint8_t c)
{
q15_t inBuffer[DSTAR_RADIO_BIT_LENGTH * 8U + 1U];
q15_t outBuffer[DSTAR_RADIO_BIT_LENGTH * 8U + 1U];
q15_t inBuffer[8U];
q15_t outBuffer[DSTAR_RADIO_SYMBOL_LENGTH * 8U];
uint8_t mask = 0x01U;
q15_t* p = inBuffer;
for (uint8_t i = 0U; i < 8U; i++, p += DSTAR_RADIO_BIT_LENGTH) {
for (uint8_t i = 0U; i < 8U; i++) {
if ((c & mask) == mask)
::memcpy(p, DSTAR_LEVEL0, DSTAR_RADIO_BIT_LENGTH * sizeof(q15_t));
inBuffer[i] = DSTAR_LEVEL0;
else
::memcpy(p, DSTAR_LEVEL1, DSTAR_RADIO_BIT_LENGTH * sizeof(q15_t));
inBuffer[i] = DSTAR_LEVEL1;
mask <<= 1;
}
uint16_t blockSize = DSTAR_RADIO_BIT_LENGTH * 8U;
::arm_fir_interpolate_q15(&m_modFilter, inBuffer, outBuffer, 8U);
// Handle the case of the oscillator not being accurate enough
if (m_sampleCount > 0U) {
m_count += DSTAR_RADIO_BIT_LENGTH * 8U;
if (m_count >= m_sampleCount) {
if (m_sampleInsert) {
inBuffer[DSTAR_RADIO_BIT_LENGTH * 8U] = inBuffer[DSTAR_RADIO_BIT_LENGTH * 8U - 1U];
blockSize++;
} else {
blockSize--;
}
m_count -= m_sampleCount;
}
}
::arm_fir_fast_q15(&m_modFilter, inBuffer, outBuffer, blockSize);
io.write(STATE_DSTAR, outBuffer, blockSize);
io.write(STATE_DSTAR, outBuffer, DSTAR_RADIO_SYMBOL_LENGTH * 8U);
}
void CDStarTX::setTXDelay(uint8_t delay)
{
m_txDelay = 150U + uint16_t(delay) * 6U; // 250ms + tx delay
m_txDelay = 300U + uint16_t(delay) * 6U; // 250ms + tx delay
if (m_txDelay > 600U)
m_txDelay = 600U;
}
uint16_t CDStarTX::getSpace() const
uint8_t CDStarTX::getSpace() const
{
return m_buffer.getSpace() / (DSTAR_DATA_LENGTH_BYTES + 1U);
}

View File

@ -1,5 +1,5 @@
/*
* Copyright (C) 2015,2016 by Jonathan Naylor G4KLX
* Copyright (C) 2015,2016,2017 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -35,17 +35,16 @@ public:
void setTXDelay(uint8_t delay);
uint16_t getSpace() const;
uint8_t getSpace() const;
private:
CSerialRB m_buffer;
arm_fir_instance_q15 m_modFilter;
q15_t m_modState[80U]; // NoTaps + BlockSize - 1, 12 + 40 - 1 plus some spare
uint8_t m_poBuffer[500U];
arm_fir_interpolate_instance_q15 m_modFilter;
q15_t m_modState[15U]; // blockSize + phaseLength - 1, 8 + 3 - 1 plus some spare
uint8_t m_poBuffer[600U];
uint16_t m_poLen;
uint16_t m_poPtr;
uint16_t m_txDelay; // In bytes
uint32_t m_count;
void txHeader(const uint8_t* in, uint8_t* out) const;
void writeByte(uint8_t c);

17
Debug.h
View File

@ -1,5 +1,5 @@
/*
* Copyright (C) 2015,2016 by Jonathan Naylor G4KLX
* Copyright (C) 2015,2016,2017 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -20,9 +20,6 @@
#define DEBUG_H
#include "Config.h"
#if defined(WANT_DEBUG)
#include "Globals.h"
#define DEBUG1(a) serial.writeDebug((a))
@ -30,18 +27,6 @@
#define DEBUG3(a,b,c) serial.writeDebug((a),(b),(c))
#define DEBUG4(a,b,c,d) serial.writeDebug((a),(b),(c),(d))
#define DEBUG5(a,b,c,d,e) serial.writeDebug((a),(b),(c),(d),(e))
#define ASSERT(a) serial.writeAssert((a),#a,__FILE__,__LINE__)
#else
#define DEBUG1(a)
#define DEBUG2(a,b)
#define DEBUG3(a,b,c)
#define DEBUG4(a,b,c,d)
#define DEBUG5(a,b,c,d,e)
#define ASSERT(a)
#endif
#endif

1
GitVersion.h Normal file
View File

@ -0,0 +1 @@
#define GITVERSION "0000000"

View File

@ -1,5 +1,5 @@
/*
* Copyright (C) 2015,2016 by Jonathan Naylor G4KLX
* Copyright (C) 2015,2016,2017,2018 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -19,15 +19,22 @@
#if !defined(GLOBALS_H)
#define GLOBALS_H
#if defined(STM32F4XX) || defined(STM32F4)
#if defined(STM32F4XX)
#include "stm32f4xx.h"
#elif defined(STM32F7XX)
#include "stm32f7xx.h"
#elif defined(STM32F105xC)
#include "stm32f1xx.h"
#include "STM32Utils.h"
#else
#include <Arduino.h>
#endif
#if defined(__SAM3X8E__)
#if defined(__SAM3X8E__) || defined(STM32F105xC)
#define ARM_MATH_CM3
#elif defined(STM32F4XX) || defined(STM32F4) || defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__)
#elif defined(STM32F7XX)
#define ARM_MATH_CM7
#elif defined(STM32F4XX) || defined(__MK20DX256__) || defined(__MK64FX512__) || defined(__MK66FX1M0__)
#define ARM_MATH_CM4
#else
#error "Unknown processor type"
@ -41,8 +48,15 @@ enum MMDVM_STATE {
STATE_DMR = 2,
STATE_YSF = 3,
STATE_P25 = 4,
STATE_NXDN = 5,
// Dummy states start at 90
STATE_NXDNCAL1K = 91,
STATE_DMRDMO1K = 92,
STATE_P25CAL1K = 93,
STATE_DMRCAL1K = 94,
STATE_LFCAL = 95,
STATE_RSSICAL = 96,
STATE_CWID = 97,
STATE_DMRCAL = 98,
STATE_DSTARCAL = 99
@ -60,9 +74,14 @@ enum MMDVM_STATE {
#include "YSFTX.h"
#include "P25RX.h"
#include "P25TX.h"
#include "NXDNRX.h"
#include "NXDNTX.h"
#include "CalDStarRX.h"
#include "CalDStarTX.h"
#include "CalDMR.h"
#include "CalP25.h"
#include "CalNXDN.h"
#include "CalRSSI.h"
#include "CWIdTX.h"
#include "Debug.h"
#include "IO.h"
@ -73,8 +92,8 @@ const uint8_t MARK_NONE = 0x00U;
const uint16_t RX_BLOCK_SIZE = 2U;
const uint16_t TX_RINGBUFFER_SIZE = 500U;
const uint16_t RX_RINGBUFFER_SIZE = 600U;
const uint16_t TX_RINGBUFFER_SIZE = 1000U;
const uint16_t RX_RINGBUFFER_SIZE = 1200U;
extern MMDVM_STATE m_modemState;
@ -82,15 +101,13 @@ extern bool m_dstarEnable;
extern bool m_dmrEnable;
extern bool m_ysfEnable;
extern bool m_p25Enable;
extern bool m_nxdnEnable;
extern bool m_duplex;
extern bool m_tx;
extern bool m_dcd;
extern uint32_t m_sampleCount;
extern bool m_sampleInsert;
extern CSerialPort serial;
extern CIO io;
@ -110,9 +127,15 @@ extern CYSFTX ysfTX;
extern CP25RX p25RX;
extern CP25TX p25TX;
extern CNXDNRX nxdnRX;
extern CNXDNTX nxdnTX;
extern CCalDStarRX calDStarRX;
extern CCalDStarTX calDStarTX;
extern CCalDMR calDMR;
extern CCalP25 calP25;
extern CCalNXDN calNXDN;
extern CCalRSSI calRSSI;
extern CCWIdTX cwIdTX;

392
IO.cpp
View File

@ -1,5 +1,5 @@
/*
* Copyright (C) 2015,2016 by Jonathan Naylor G4KLX
* Copyright (C) 2015,2016,2017,2018 by Jonathan Naylor G4KLX
* Copyright (C) 2015 by Jim Mclaughlin KI6ZUM
* Copyright (C) 2016 by Colin Durbridge G4EML
*
@ -18,20 +18,44 @@
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
// #define WANT_DEBUG
#include "Config.h"
#include "Globals.h"
#include "IO.h"
// Generated using rcosdesign(0.2, 4, 10, 'sqrt') in MATLAB
static q15_t C4FSK_FILTER[] = {486, 39, -480, -1022, -1526, -1928, -2164, -2178, -1927, -1384, -548, 561, 1898, 3399, 4980, 6546, 7999, 9246, 10202, 10803, 11008, 10803, 10202, 9246,
7999, 6546, 4980, 3399, 1898, 561, -548, -1384, -1927, -2178, -2164, -1928, -1526, -1022, -480, 39, 486, 0};
const uint16_t C4FSK_FILTER_LEN = 42U;
// Generated using [b, a] = butter(1, 0.0005) in MATLAB
static q31_t DC_FILTER[] = {1685306, 0, 1685306, 0, 2144113034, 0}; // {b0, 0, b1, b2, -a1, -a2}
const uint32_t DC_FILTER_STAGES = 1U; // One Biquad stage
// Generated using rcosdesign(0.2, 8, 10, 'sqrt') in MATLAB
static q15_t RRC_0_2_FILTER[] = {284, 198, 73, -78, -240, -393, -517, -590, -599, -533, -391, -181, 79, 364, 643, 880, 1041, 1097, 1026, 819,
483, 39, -477, -1016, -1516, -1915, -2150, -2164, -1914, -1375, -545, 557, 1886, 3376, 4946, 6502, 7946, 9184,
10134, 10731, 10935, 10731, 10134, 9184, 7946, 6502, 4946, 3376, 1886, 557, -545, -1375, -1914, -2164, -2150,
-1915, -1516, -1016, -477, 39, 483, 819, 1026, 1097, 1041, 880, 643, 364, 79, -181, -391, -533, -599, -590,
-517, -393, -240, -78, 73, 198, 284, 0};
const uint16_t RRC_0_2_FILTER_LEN = 82U;
// Generated using rcosdesign(0.2, 8, 20, 'sqrt') in MATLAB
static q15_t NXDN_0_2_FILTER[] = {201, 174, 140, 99, 52, 0, -55, -112, -170, -226, -278, -325, -365, -397, -417, -427, -424, -407, -377, -333, -277, -208,
-128, -40, 56, 156, 258, 358, 455, 544, 622, 687, 736, 766, 775, 762, 725, 664, 579, 471, 342, 193, 27, -151, -338, -528,
-718, -901, -1072, -1225, -1354, -1454, -1520, -1547, -1530, -1466, -1353, -1189, -972, -704, -385, -18, 394, 846, 1333,
1850, 2388, 2940, 3498, 4053, 4598, 5122, 5619, 6079, 6494, 6859, 7166, 7410, 7588, 7696, 7732, 7696, 7588, 7410, 7166,
6859, 6494, 6079, 5619, 5122, 4598, 4053, 3498, 2940, 2388, 1850, 1333, 846, 394, -18, -385, -704, -972, -1189, -1353,
-1466, -1530, -1547, -1520, -1454, -1354, -1225, -1072, -901, -718, -528, -338, -151, 27, 193, 342, 471, 579, 664, 725,
762, 775, 766, 736, 687, 622, 544, 455, 358, 258, 156, 56, -40, -128, -208, -277, -333, -377, -407, -424, -427, -417, -397,
-365, -325, -278, -226, -170, -112, -55, 0, 52, 99, 140, 174, 201, 0};
const uint16_t NXDN_0_2_FILTER_LEN = 162U;
static q15_t NXDN_ISINC_FILTER[] = {790, -1085, -1073, -553, 747, 2341, 3156, 2152, -893, -4915, -7834, -7536, -3102, 4441, 12354, 17394, 17394,
12354, 4441, -3102, -7536, -7834, -4915, -893, 2152, 3156, 2341, 747, -553, -1073, -1085, 790};
const uint16_t NXDN_ISINC_FILTER_LEN = 32U;
// Generated using gaussfir(0.5, 4, 10) in MATLAB
static q15_t GMSK_FILTER[] = {1, 4, 15, 52, 151, 380, 832, 1579, 2599, 3710, 4594, 4933, 4594, 3710, 2599, 1579, 832, 380, 151, 52, 15, 4, 1, 0};
const uint16_t GMSK_FILTER_LEN = 24U;
//static q15_t GAUSSIAN_0_5_FILTER[] = {1, 4, 15, 52, 151, 380, 832, 1579, 2599, 3710, 4594, 4933, 4594, 3710, 2599, 1579, 832, 380, 151, 52, 15, 4, 1, 0};
//const uint16_t GAUSSIAN_0_5_FILTER_LEN = 24U;
// One symbol boxcar filter
static q15_t BOXCAR_FILTER[] = {6000, 6000, 6000, 6000, 6000, 6000, 6000, 6000, 6000, 6000, 0, 0};
const uint16_t BOXCAR_FILTER_LEN = 12U;
const uint16_t DC_OFFSET = 2048U;
@ -40,10 +64,18 @@ m_started(false),
m_rxBuffer(RX_RINGBUFFER_SIZE),
m_txBuffer(TX_RINGBUFFER_SIZE),
m_rssiBuffer(RX_RINGBUFFER_SIZE),
m_C4FSKFilter(),
m_GMSKFilter(),
m_C4FSKState(),
m_GMSKState(),
m_dcFilter(),
m_dcState(),
m_rrcFilter(),
//m_gaussianFilter(),
m_boxcarFilter(),
m_nxdnFilter(),
m_nxdnISincFilter(),
m_rrcState(),
//m_gaussianState(),
m_boxcarState(),
m_nxdnState(),
m_nxdnISincState(),
m_pttInvert(false),
m_rxLevel(128 * 128),
m_cwIdTXLevel(128 * 128),
@ -51,27 +83,153 @@ m_dstarTXLevel(128 * 128),
m_dmrTXLevel(128 * 128),
m_ysfTXLevel(128 * 128),
m_p25TXLevel(128 * 128),
m_nxdnTXLevel(128 * 128),
m_rxDCOffset(DC_OFFSET),
m_txDCOffset(DC_OFFSET),
m_ledCount(0U),
m_ledValue(true),
m_detect(false),
m_adcOverflow(0U),
m_dacOverflow(0U),
m_count(0U),
m_watchdog(0U),
m_lockout(false)
{
::memset(m_C4FSKState, 0x00U, 70U * sizeof(q15_t));
::memset(m_GMSKState, 0x00U, 40U * sizeof(q15_t));
::memset(m_rrcState, 0x00U, 140U * sizeof(q15_t));
// ::memset(m_gaussianState, 0x00U, 80U * sizeof(q15_t));
::memset(m_boxcarState, 0x00U, 60U * sizeof(q15_t));
::memset(m_nxdnState, 0x00U, 220U * sizeof(q15_t));
::memset(m_nxdnISincState, 0x00U, 60U * sizeof(q15_t));
::memset(m_dcState, 0x00U, 4U * sizeof(q31_t));
m_C4FSKFilter.numTaps = C4FSK_FILTER_LEN;
m_C4FSKFilter.pState = m_C4FSKState;
m_C4FSKFilter.pCoeffs = C4FSK_FILTER;
m_dcFilter.numStages = DC_FILTER_STAGES;
m_dcFilter.pState = m_dcState;
m_dcFilter.pCoeffs = DC_FILTER;
m_dcFilter.postShift = 0;
m_GMSKFilter.numTaps = GMSK_FILTER_LEN;
m_GMSKFilter.pState = m_GMSKState;
m_GMSKFilter.pCoeffs = GMSK_FILTER;
m_rrcFilter.numTaps = RRC_0_2_FILTER_LEN;
m_rrcFilter.pState = m_rrcState;
m_rrcFilter.pCoeffs = RRC_0_2_FILTER;
// m_gaussianFilter.numTaps = GAUSSIAN_0_5_FILTER_LEN;
// m_gaussianFilter.pState = m_gaussianState;
// m_gaussianFilter.pCoeffs = GAUSSIAN_0_5_FILTER;
m_boxcarFilter.numTaps = BOXCAR_FILTER_LEN;
m_boxcarFilter.pState = m_boxcarState;
m_boxcarFilter.pCoeffs = BOXCAR_FILTER;
m_nxdnFilter.numTaps = NXDN_0_2_FILTER_LEN;
m_nxdnFilter.pState = m_nxdnState;
m_nxdnFilter.pCoeffs = NXDN_0_2_FILTER;
m_nxdnISincFilter.numTaps = NXDN_ISINC_FILTER_LEN;
m_nxdnISincFilter.pState = m_nxdnISincState;
m_nxdnISincFilter.pCoeffs = NXDN_ISINC_FILTER;
initInt();
selfTest();
}
void CIO::selfTest()
{
bool ledValue = false;
for (uint8_t i = 0; i < 6; i++) {
ledValue = !ledValue;
// We exclude PTT to avoid trigger the transmitter
setLEDInt(ledValue);
setCOSInt(ledValue);
#if defined(ARDUINO_MODE_PINS)
setDStarInt(ledValue);
setDMRInt(ledValue);
setYSFInt(ledValue);
setP25Int(ledValue);
setNXDNInt(ledValue);
#endif
delayInt(250);
}
#if defined(ARDUINO_MODE_PINS)
setDStarInt(true);
setDMRInt(false);
setYSFInt(false);
setP25Int(false);
setNXDNInt(false);
delayInt(250);
setDStarInt(true);
setDMRInt(true);
setYSFInt(false);
setP25Int(false);
setNXDNInt(false);
delayInt(250);
setDStarInt(true);
setDMRInt(true);
setYSFInt(true);
setP25Int(false);
setNXDNInt(false);
delayInt(250);
setDStarInt(true);
setDMRInt(true);
setYSFInt(true);
setP25Int(true);
setNXDNInt(false);
delayInt(250);
setDStarInt(true);
setDMRInt(true);
setYSFInt(true);
setP25Int(true);
setNXDNInt(true);
delayInt(250);
setDStarInt(true);
setDMRInt(true);
setYSFInt(true);
setP25Int(true);
setNXDNInt(false);
delayInt(250);
setDStarInt(true);
setDMRInt(true);
setYSFInt(true);
setP25Int(false);
setNXDNInt(false);
delayInt(250);
setDStarInt(true);
setDMRInt(true);
setYSFInt(false);
setP25Int(false);
setNXDNInt(false);
delayInt(250);
setDStarInt(true);
setDMRInt(false);
setYSFInt(false);
setP25Int(false);
setNXDNInt(false);
delayInt(250);
setDStarInt(false);
setDMRInt(false);
setYSFInt(false);
setP25Int(false);
setNXDNInt(false);
#endif
}
void CIO::start()
@ -81,7 +239,6 @@ void CIO::start()
startInt();
m_count = 0U;
m_started = true;
setMode();
@ -93,7 +250,7 @@ void CIO::process()
if (m_started) {
// Two seconds timeout
if (m_watchdog >= 96000U) {
if (m_modemState == STATE_DSTAR || m_modemState == STATE_DMR || m_modemState == STATE_YSF) {
if (m_modemState == STATE_DSTAR || m_modemState == STATE_DMR || m_modemState == STATE_YSF || m_modemState == STATE_P25 || m_modemState == STATE_NXDN) {
if (m_modemState == STATE_DMR && m_tx)
dmrTX.setStart(false);
m_modemState = STATE_IDLE;
@ -128,11 +285,9 @@ void CIO::process()
}
if (m_rxBuffer.getData() >= RX_BLOCK_SIZE) {
q15_t samples[RX_BLOCK_SIZE + 1U];
uint8_t control[RX_BLOCK_SIZE + 1U];
uint16_t rssi[RX_BLOCK_SIZE + 1U];
uint8_t blockSize = RX_BLOCK_SIZE;
q15_t samples[RX_BLOCK_SIZE];
uint8_t control[RX_BLOCK_SIZE];
uint16_t rssi[RX_BLOCK_SIZE];
for (uint16_t i = 0U; i < RX_BLOCK_SIZE; i++) {
uint16_t sample;
@ -143,100 +298,146 @@ void CIO::process()
if (m_detect && (sample == 0U || sample == 4095U))
m_adcOverflow++;
q15_t res1 = q15_t(sample) - DC_OFFSET;
q15_t res1 = q15_t(sample) - m_rxDCOffset;
q31_t res2 = res1 * m_rxLevel;
samples[i] = q15_t(__SSAT((res2 >> 15), 16));
}
// Handle the case of the oscillator not being accurate enough
if (m_sampleCount > 0U) {
m_count += RX_BLOCK_SIZE;
if (m_count >= m_sampleCount) {
if (m_sampleInsert) {
blockSize++;
samples[RX_BLOCK_SIZE] = 0;
for (int8_t i = RX_BLOCK_SIZE - 1; i >= 0; i--)
control[i + 1] = control[i];
} else {
blockSize--;
for (uint8_t i = 0U; i < (RX_BLOCK_SIZE - 1U); i++)
control[i] = control[i + 1U];
}
m_count -= m_sampleCount;
}
}
if (m_lockout)
return;
#if defined(USE_DCBLOCKER)
q31_t q31Samples[RX_BLOCK_SIZE];
::arm_q15_to_q31(samples, q31Samples, RX_BLOCK_SIZE);
q31_t dcValues[RX_BLOCK_SIZE];
::arm_biquad_cascade_df1_q31(&m_dcFilter, q31Samples, dcValues, RX_BLOCK_SIZE);
q31_t dcLevel = 0;
for (uint8_t i = 0U; i < RX_BLOCK_SIZE; i++)
dcLevel += dcValues[i];
dcLevel /= RX_BLOCK_SIZE;
q15_t offset = q15_t(__SSAT((dcLevel >> 16), 16));;
q15_t dcSamples[RX_BLOCK_SIZE];
for (uint8_t i = 0U; i < RX_BLOCK_SIZE; i++)
dcSamples[i] = samples[i] - offset;
#endif
if (m_modemState == STATE_IDLE) {
if (m_dstarEnable) {
q15_t GMSKVals[RX_BLOCK_SIZE + 1U];
::arm_fir_fast_q15(&m_GMSKFilter, samples, GMSKVals, blockSize);
dstarRX.samples(GMSKVals, blockSize);
q15_t GMSKVals[RX_BLOCK_SIZE];
#if defined(USE_DCBLOCKER)
::arm_fir_fast_q15(&m_boxcarFilter, dcSamples, GMSKVals, RX_BLOCK_SIZE);
#else
::arm_fir_fast_q15(&m_boxcarFilter, samples, GMSKVals, RX_BLOCK_SIZE);
#endif
dstarRX.samples(GMSKVals, rssi, RX_BLOCK_SIZE);
}
if (m_dmrEnable || m_ysfEnable || m_p25Enable) {
q15_t C4FSKVals[RX_BLOCK_SIZE + 1U];
::arm_fir_fast_q15(&m_C4FSKFilter, samples, C4FSKVals, blockSize);
if (m_p25Enable) {
q15_t P25Vals[RX_BLOCK_SIZE];
#if defined(USE_DCBLOCKER)
::arm_fir_fast_q15(&m_boxcarFilter, dcSamples, P25Vals, RX_BLOCK_SIZE);
#else
::arm_fir_fast_q15(&m_boxcarFilter, samples, P25Vals, RX_BLOCK_SIZE);
#endif
p25RX.samples(P25Vals, rssi, RX_BLOCK_SIZE);
}
if (m_nxdnEnable) {
q15_t NXDNValsTmp[RX_BLOCK_SIZE];
#if defined(USE_DCBLOCKER)
::arm_fir_fast_q15(&m_nxdnFilter, dcSamples, NXDNValsTmp, RX_BLOCK_SIZE);
#else
::arm_fir_fast_q15(&m_nxdnFilter, samples, NXDNValsTmp, RX_BLOCK_SIZE);
#endif
q15_t NXDNVals[RX_BLOCK_SIZE];
::arm_fir_fast_q15(&m_nxdnISincFilter, NXDNValsTmp, NXDNVals, RX_BLOCK_SIZE);
nxdnRX.samples(NXDNVals, rssi, RX_BLOCK_SIZE);
}
if (m_dmrEnable || m_ysfEnable) {
q15_t RRCVals[RX_BLOCK_SIZE];
::arm_fir_fast_q15(&m_rrcFilter, samples, RRCVals, RX_BLOCK_SIZE);
if (m_ysfEnable)
ysfRX.samples(RRCVals, rssi, RX_BLOCK_SIZE);
if (m_dmrEnable) {
if (m_duplex)
dmrIdleRX.samples(C4FSKVals, blockSize);
dmrIdleRX.samples(RRCVals, RX_BLOCK_SIZE);
else
dmrDMORX.samples(C4FSKVals, rssi, blockSize);
dmrDMORX.samples(RRCVals, rssi, RX_BLOCK_SIZE);
}
if (m_ysfEnable)
ysfRX.samples(C4FSKVals, blockSize);
if (m_p25Enable)
p25RX.samples(C4FSKVals, blockSize);
}
} else if (m_modemState == STATE_DSTAR) {
if (m_dstarEnable) {
q15_t GMSKVals[RX_BLOCK_SIZE + 1U];
::arm_fir_fast_q15(&m_GMSKFilter, samples, GMSKVals, blockSize);
dstarRX.samples(GMSKVals, blockSize);
q15_t GMSKVals[RX_BLOCK_SIZE];
#if defined(USE_DCBLOCKER)
::arm_fir_fast_q15(&m_boxcarFilter, dcSamples, GMSKVals, RX_BLOCK_SIZE);
#else
::arm_fir_fast_q15(&m_boxcarFilter, samples, GMSKVals, RX_BLOCK_SIZE);
#endif
dstarRX.samples(GMSKVals, rssi, RX_BLOCK_SIZE);
}
} else if (m_modemState == STATE_DMR) {
if (m_dmrEnable) {
q15_t C4FSKVals[RX_BLOCK_SIZE + 1U];
::arm_fir_fast_q15(&m_C4FSKFilter, samples, C4FSKVals, blockSize);
q15_t DMRVals[RX_BLOCK_SIZE];
::arm_fir_fast_q15(&m_rrcFilter, samples, DMRVals, RX_BLOCK_SIZE);
if (m_duplex) {
// If the transmitter isn't on, use the DMR idle RX to detect the wakeup CSBKs
if (m_tx)
dmrRX.samples(C4FSKVals, rssi, control, blockSize);
dmrRX.samples(DMRVals, rssi, control, RX_BLOCK_SIZE);
else
dmrIdleRX.samples(C4FSKVals, blockSize);
dmrIdleRX.samples(DMRVals, RX_BLOCK_SIZE);
} else {
dmrDMORX.samples(C4FSKVals, rssi, blockSize);
dmrDMORX.samples(DMRVals, rssi, RX_BLOCK_SIZE);
}
}
} else if (m_modemState == STATE_YSF) {
if (m_ysfEnable) {
q15_t C4FSKVals[RX_BLOCK_SIZE + 1U];
::arm_fir_fast_q15(&m_C4FSKFilter, samples, C4FSKVals, blockSize);
ysfRX.samples(C4FSKVals, blockSize);
q15_t YSFVals[RX_BLOCK_SIZE];
#if defined(USE_DCBLOCKER)
::arm_fir_fast_q15(&m_rrcFilter, dcSamples, YSFVals, RX_BLOCK_SIZE);
#else
::arm_fir_fast_q15(&m_rrcFilter, samples, YSFVals, RX_BLOCK_SIZE);
#endif
ysfRX.samples(YSFVals, rssi, RX_BLOCK_SIZE);
}
} else if (m_modemState == STATE_P25) {
if (m_p25Enable) {
q15_t C4FSKVals[RX_BLOCK_SIZE + 1U];
::arm_fir_fast_q15(&m_C4FSKFilter, samples, C4FSKVals, blockSize);
q15_t P25Vals[RX_BLOCK_SIZE];
#if defined(USE_DCBLOCKER)
::arm_fir_fast_q15(&m_boxcarFilter, dcSamples, P25Vals, RX_BLOCK_SIZE);
#else
::arm_fir_fast_q15(&m_boxcarFilter, samples, P25Vals, RX_BLOCK_SIZE);
#endif
p25RX.samples(P25Vals, rssi, RX_BLOCK_SIZE);
}
} else if (m_modemState == STATE_NXDN) {
if (m_nxdnEnable) {
q15_t NXDNValsTmp[RX_BLOCK_SIZE];
#if defined(USE_DCBLOCKER)
::arm_fir_fast_q15(&m_nxdnFilter, dcSamples, NXDNValsTmp, RX_BLOCK_SIZE);
#else
::arm_fir_fast_q15(&m_nxdnFilter, samples, NXDNValsTmp, RX_BLOCK_SIZE);
#endif
q15_t NXDNVals[RX_BLOCK_SIZE];
::arm_fir_fast_q15(&m_nxdnISincFilter, NXDNValsTmp, NXDNVals, RX_BLOCK_SIZE);
p25RX.samples(C4FSKVals, blockSize);
nxdnRX.samples(NXDNVals, rssi, RX_BLOCK_SIZE);
}
} else if (m_modemState == STATE_DSTARCAL) {
q15_t GMSKVals[RX_BLOCK_SIZE + 1U];
::arm_fir_fast_q15(&m_GMSKFilter, samples, GMSKVals, blockSize);
q15_t GMSKVals[RX_BLOCK_SIZE];
::arm_fir_fast_q15(&m_boxcarFilter, samples, GMSKVals, RX_BLOCK_SIZE);
calDStarRX.samples(GMSKVals, blockSize);
calDStarRX.samples(GMSKVals, RX_BLOCK_SIZE);
} else if (m_modemState == STATE_RSSICAL) {
calRSSI.samples(rssi, RX_BLOCK_SIZE);
}
}
}
@ -269,6 +470,9 @@ void CIO::write(MMDVM_STATE mode, q15_t* samples, uint16_t length, const uint8_t
case STATE_P25:
txLevel = m_p25TXLevel;
break;
case STATE_NXDN:
txLevel = m_nxdnTXLevel;
break;
default:
txLevel = m_cwIdTXLevel;
break;
@ -277,7 +481,7 @@ void CIO::write(MMDVM_STATE mode, q15_t* samples, uint16_t length, const uint8_t
for (uint16_t i = 0U; i < length; i++) {
q31_t res1 = samples[i] * txLevel;
q15_t res2 = q15_t(__SSAT((res1 >> 15), 16));
uint16_t res3 = uint16_t(res2 + DC_OFFSET);
uint16_t res3 = uint16_t(res2 + m_txDCOffset);
// Detect DAC overflow
if (res3 > 4095U)
@ -315,10 +519,11 @@ void CIO::setMode()
setDMRInt(m_modemState == STATE_DMR);
setYSFInt(m_modemState == STATE_YSF);
setP25Int(m_modemState == STATE_P25);
setNXDNInt(m_modemState == STATE_NXDN);
#endif
}
void CIO::setParameters(bool rxInvert, bool txInvert, bool pttInvert, uint8_t rxLevel, uint8_t cwIdTXLevel, uint8_t dstarTXLevel, uint8_t dmrTXLevel, uint8_t ysfTXLevel, uint8_t p25TXLevel)
void CIO::setParameters(bool rxInvert, bool txInvert, bool pttInvert, uint8_t rxLevel, uint8_t cwIdTXLevel, uint8_t dstarTXLevel, uint8_t dmrTXLevel, uint8_t ysfTXLevel, uint8_t p25TXLevel, uint8_t nxdnTXLevel, int16_t txDCOffset, int16_t rxDCOffset)
{
m_pttInvert = pttInvert;
@ -328,6 +533,10 @@ void CIO::setParameters(bool rxInvert, bool txInvert, bool pttInvert, uint8_t rx
m_dmrTXLevel = q15_t(dmrTXLevel * 128);
m_ysfTXLevel = q15_t(ysfTXLevel * 128);
m_p25TXLevel = q15_t(p25TXLevel * 128);
m_nxdnTXLevel = q15_t(nxdnTXLevel * 128);
m_rxDCOffset = DC_OFFSET + rxDCOffset;
m_txDCOffset = DC_OFFSET + txDCOffset;
if (rxInvert)
m_rxLevel = -m_rxLevel;
@ -337,6 +546,7 @@ void CIO::setParameters(bool rxInvert, bool txInvert, bool pttInvert, uint8_t rx
m_dmrTXLevel = -m_dmrTXLevel;
m_ysfTXLevel = -m_ysfTXLevel;
m_p25TXLevel = -m_p25TXLevel;
m_nxdnTXLevel = -m_nxdnTXLevel;
}
}
@ -345,11 +555,6 @@ void CIO::getOverflow(bool& adcOverflow, bool& dacOverflow)
adcOverflow = m_adcOverflow > 0U;
dacOverflow = m_dacOverflow > 0U;
#if defined(WANT_DEBUG)
if (m_adcOverflow > 0U || m_dacOverflow > 0U)
DEBUG3("IO: adc/dac", m_adcOverflow, m_dacOverflow);
#endif
m_adcOverflow = 0U;
m_dacOverflow = 0U;
}
@ -369,6 +574,11 @@ void CIO::resetWatchdog()
m_watchdog = 0U;
}
uint32_t CIO::getWatchdog()
{
return m_watchdog;
}
bool CIO::hasLockout() const
{
return m_lockout;

35
IO.h
View File

@ -1,5 +1,5 @@
/*
* Copyright (C) 2015,2016 by Jonathan Naylor G4KLX
* Copyright (C) 2015,2016,2017,2018 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -40,9 +40,9 @@ public:
void setADCDetection(bool detect);
void setMode();
void interrupt(uint8_t source);
void interrupt();
void setParameters(bool rxInvert, bool txInvert, bool pttInvert, uint8_t rxLevel, uint8_t cwIdTXLevel, uint8_t dstarTXLevel, uint8_t dmrTXLevel, uint8_t ysfTXLevel, uint8_t p25TXLevel);
void setParameters(bool rxInvert, bool txInvert, bool pttInvert, uint8_t rxLevel, uint8_t cwIdTXLevel, uint8_t dstarTXLevel, uint8_t dmrTXLevel, uint8_t ysfTXLevel, uint8_t p25TXLevel, uint8_t nxdnLevel, int16_t txDCOffset, int16_t rxDCOffset);
void getOverflow(bool& adcOverflow, bool& dacOverflow);
@ -52,6 +52,9 @@ public:
bool hasLockout() const;
void resetWatchdog();
uint32_t getWatchdog();
void selfTest();
private:
bool m_started;
@ -60,10 +63,19 @@ private:
CSampleRB m_txBuffer;
CRSSIRB m_rssiBuffer;
arm_fir_instance_q15 m_C4FSKFilter;
arm_fir_instance_q15 m_GMSKFilter;
q15_t m_C4FSKState[70U]; // NoTaps + BlockSize - 1, 42 + 20 - 1 plus some spare
q15_t m_GMSKState[80U]; // NoTaps + BlockSize - 1, 12 + 20 - 1 plus some spare
arm_biquad_casd_df1_inst_q31 m_dcFilter;
q31_t m_dcState[4];
arm_fir_instance_q15 m_rrcFilter;
//arm_fir_instance_q15 m_gaussianFilter;
arm_fir_instance_q15 m_boxcarFilter;
arm_fir_instance_q15 m_nxdnFilter;
arm_fir_instance_q15 m_nxdnISincFilter;
q15_t m_rrcState[140U]; // NoTaps + BlockSize - 1, 82 + 20 - 1 plus some spare
//q15_t m_gaussianState[80U]; // NoTaps + BlockSize - 1, 24 + 20 - 1 plus some spare
q15_t m_boxcarState[60U]; // NoTaps + BlockSize - 1, 12 + 20 - 1 plus some spare
q15_t m_nxdnState[220U]; // NoTaps + BlockSize - 1, 162 + 20 - 1 plus some spare
q15_t m_nxdnISincState[60U]; // NoTaps + BlockSize - 1, 32 + 20 - 1 plus some spare
bool m_pttInvert;
q15_t m_rxLevel;
@ -72,6 +84,10 @@ private:
q15_t m_dmrTXLevel;
q15_t m_ysfTXLevel;
q15_t m_p25TXLevel;
q15_t m_nxdnTXLevel;
uint16_t m_rxDCOffset;
uint16_t m_txDCOffset;
uint32_t m_ledCount;
bool m_ledValue;
@ -81,8 +97,6 @@ private:
uint16_t m_adcOverflow;
uint16_t m_dacOverflow;
uint32_t m_count;
volatile uint32_t m_watchdog;
bool m_lockout;
@ -101,6 +115,9 @@ private:
void setDMRInt(bool on);
void setYSFInt(bool on);
void setP25Int(bool on);
void setNXDNInt(bool on);
void delayInt(unsigned int dly);
};
#endif

View File

@ -1,5 +1,5 @@
/*
* Copyright (C) 2015,2016 by Jonathan Naylor G4KLX
* Copyright (C) 2015,2016,2017,2018 by Jonathan Naylor G4KLX
* Copyright (C) 2015 by Jim Mclaughlin KI6ZUM
* Copyright (C) 2016 by Colin Durbridge G4EML
*
@ -33,6 +33,7 @@
#define PIN_DMR 17
#define PIN_YSF 18
#define PIN_P25 19
#define PIN_NXDN 20
#define ADC_CHER_Chan (1<<7) // ADC on Due pin A0 - Due AD7 - (1 << 7)
#define ADC_ISR_EOC_Chan ADC_ISR_EOC7
#define ADC_CDR_Chan 7
@ -46,6 +47,7 @@
#define PIN_DMR 8
#define PIN_YSF 7
#define PIN_P25 6
#define PIN_NXDN 5
#define ADC_CHER_Chan (1<<13) // ADC on Due pin A11 - Due AD13 - (1 << 13)
#define ADC_ISR_EOC_Chan ADC_ISR_EOC13
#define ADC_CDR_Chan 13
@ -61,6 +63,7 @@
#define PIN_DMR 8
#define PIN_YSF 7
#define PIN_P25 6
#define PIN_NXDN 5
#define ADC_CHER_Chan (1<<7) // ADC on Due pin A0 - Due AD7 - (1 << 7)
#define ADC_ISR_EOC_Chan ADC_ISR_EOC7
#define ADC_CDR_Chan 7
@ -77,7 +80,7 @@ const uint16_t DC_OFFSET = 2048U;
extern "C" {
void ADC_Handler()
{
io.interrupt(0U);
io.interrupt();
}
}
@ -95,13 +98,14 @@ void CIO::initInt()
pinMode(PIN_DMR, OUTPUT);
pinMode(PIN_YSF, OUTPUT);
pinMode(PIN_P25, OUTPUT);
pinMode(PIN_NXDN, OUTPUT);
#endif
}
void CIO::startInt()
{
if (ADC->ADC_ISR & ADC_ISR_EOC_Chan) // Ensure there was an End-of-Conversion and we read the ISR reg
io.interrupt(0U);
io.interrupt();
// Set up the ADC
NVIC_EnableIRQ(ADC_IRQn); // Enable ADC interrupt vector
@ -164,7 +168,7 @@ void CIO::startInt()
digitalWrite(PIN_LED, HIGH);
}
void CIO::interrupt(uint8_t source)
void CIO::interrupt()
{
if ((ADC->ADC_ISR & ADC_ISR_EOC_Chan) == ADC_ISR_EOC_Chan) { // Ensure there was an End-of-Conversion and we read the ISR reg
uint8_t control = MARK_NONE;
@ -226,5 +230,15 @@ void CIO::setP25Int(bool on)
digitalWrite(PIN_P25, on ? HIGH : LOW);
}
void CIO::setNXDNInt(bool on)
{
digitalWrite(PIN_NXDN, on ? HIGH : LOW);
}
void CIO::delayInt(unsigned int dly)
{
delay(dly);
}
#endif

765
IOSTM.cpp
View File

@ -1,6 +1,7 @@
/*
* Copyright (C) 2016 by Jim McLaughlin KI6ZUM
* Copyright (C) 2016 by Andy Uribe CA6JAU
* Copyright (C) 2016,2017,2018 by Andy Uribe CA6JAU
* Copyright (C) 2017,2018 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -21,27 +22,28 @@
#include "Globals.h"
#include "IO.h"
#if defined(STM32F4XX) || defined(STM32F4)
#if defined(STM32F4XX) || defined(STM32F7XX)
#if defined(STM32F4_DISCOVERY)
/*
Pin definitions for STM32F4 Discovery Board:
PTT PB13 output
COSLED PA7 output
LED PD15 output
COS PA5 input
PTT PB13 output P1 Pin37
COSLED PA7 output P1 Pin17
LED PD15 output P1 Pin47
COS PA5 input P1 Pin15
DSTAR PD12 output
DMR PD13 output
YSF PD14 output
P25 PD11 output
DSTAR PD12 output P1 Pin44
DMR PD13 output P1 Pin45
YSF PD14 output P1 Pin46
P25 PD11 output P1 Pin43
NXDN PD10 output P1 Pin42
RX PA0 analog input
RSSI PA1 analog input
TX PA4 analog output
RX PA0 analog input P1 Pin12
RSSI PA1 analog input P1 Pin11
TX PA4 analog output P1 Pin16
EXT_CLK PA15 input
EXT_CLK PA15 input P2 Pin40
*/
#define PIN_COS GPIO_Pin_5
@ -64,6 +66,10 @@ EXT_CLK PA15 input
#define PORT_P25 GPIOD
#define RCC_Per_P25 RCC_AHB1Periph_GPIOD
#define PIN_NXDN GPIO_Pin_10
#define PORT_NXDN GPIOD
#define RCC_Per_NXDN RCC_AHB1Periph_GPIOD
#define PIN_DSTAR GPIO_Pin_12
#define PORT_DSTAR GPIOD
#define RCC_Per_DSTAR RCC_AHB1Periph_GPIOD
@ -76,11 +82,22 @@ EXT_CLK PA15 input
#define PORT_YSF GPIOD
#define RCC_Per_YSF RCC_AHB1Periph_GPIOD
#define PIN_EXT_CLK GPIO_Pin_15
#define SRC_EXT_CLK GPIO_PinSource15
#define PORT_EXT_CLK GPIOA
#define PIN_RX GPIO_Pin_0
#define PIN_RX_CH ADC_Channel_0
#define PORT_RX GPIOA
#define RCC_Per_RX RCC_AHB1Periph_GPIOA
#define PIN_RSSI GPIO_Pin_1
#define PIN_RSSI_CH ADC_Channel_1
#define PORT_RSSI GPIOA
#define RCC_Per_RSSI RCC_AHB1Periph_GPIOA
#define PIN_TX GPIO_Pin_4
#define PIN_TX_CH DAC_Channel_1
#elif defined(STM32F4_PI)
/*
@ -95,6 +112,7 @@ DSTAR PC7 output
DMR PC8 output
YSF PA8 output
P25 PC9 output
NXDN PB1 output
RX PA0 analog input
RSSI PA7 analog input
@ -123,6 +141,10 @@ EXT_CLK PA15 input
#define PORT_P25 GPIOC
#define RCC_Per_P25 RCC_AHB1Periph_GPIOC
#define PIN_NXDN GPIO_Pin_1
#define PORT_NXDN GPIOB
#define RCC_Per_NXDN RCC_AHB1Periph_GPIOB
#define PIN_DSTAR GPIO_Pin_7
#define PORT_DSTAR GPIOC
#define RCC_Per_DSTAR RCC_AHB1Periph_GPIOC
@ -135,33 +157,278 @@ EXT_CLK PA15 input
#define PORT_YSF GPIOA
#define RCC_Per_YSF RCC_AHB1Periph_GPIOA
#define PIN_EXT_CLK GPIO_Pin_15
#define SRC_EXT_CLK GPIO_PinSource15
#define PORT_EXT_CLK GPIOA
#define PIN_RX GPIO_Pin_0
#define PIN_RX_CH ADC_Channel_0
#define PORT_RX GPIOA
#define RCC_Per_RX RCC_AHB1Periph_GPIOA
#define PIN_RSSI GPIO_Pin_7
#define PIN_RSSI_CH ADC_Channel_7
#define PORT_RSSI GPIOA
#define RCC_Per_RSSI RCC_AHB1Periph_GPIOA
#elif defined(STM32F4_NUCLEO)
#define PIN_TX GPIO_Pin_4
#define PIN_TX_CH DAC_Channel_1
#elif defined(STM32F722_PI)
/*
Pin definitions for STM32F4 Nucleo boards:
Pin definitions for STM32F722 Pi Board:
PTT PB13 output
COSLED PB14 output
LED PA5 output
COS PB15 input
LED PB15 output
COS PC0 input
DSTAR PB10 output
DMR PB4 output
YSF PB5 output
P25 PB3 output
DSTAR PC7 output
DMR PC8 output
YSF PA8 output
P25 PC9 output
NXDN PB1 output
RX PA0 analog input
RSSI PA1 analog input
RSSI PA7 analog input
TX PA4 analog output
EXT_CLK PA15 input
*/
#define PIN_COS GPIO_Pin_0
#define PORT_COS GPIOC
#define RCC_Per_COS RCC_AHB1Periph_GPIOC
#define PIN_PTT GPIO_Pin_13
#define PORT_PTT GPIOB
#define RCC_Per_PTT RCC_AHB1Periph_GPIOB
#define PIN_COSLED GPIO_Pin_14
#define PORT_COSLED GPIOB
#define RCC_Per_COSLED RCC_AHB1Periph_GPIOB
#define PIN_LED GPIO_Pin_15
#define PORT_LED GPIOB
#define RCC_Per_LED RCC_AHB1Periph_GPIOB
#define PIN_P25 GPIO_Pin_9
#define PORT_P25 GPIOC
#define RCC_Per_P25 RCC_AHB1Periph_GPIOC
#define PIN_NXDN GPIO_Pin_1
#define PORT_NXDN GPIOB
#define RCC_Per_NXDN RCC_AHB1Periph_GPIOB
#define PIN_DSTAR GPIO_Pin_7
#define PORT_DSTAR GPIOC
#define RCC_Per_DSTAR RCC_AHB1Periph_GPIOC
#define PIN_DMR GPIO_Pin_8
#define PORT_DMR GPIOC
#define RCC_Per_DMR RCC_AHB1Periph_GPIOC
#define PIN_YSF GPIO_Pin_8
#define PORT_YSF GPIOA
#define RCC_Per_YSF RCC_AHB1Periph_GPIOA
#define PIN_EXT_CLK GPIO_Pin_15
#define SRC_EXT_CLK GPIO_PinSource15
#define PORT_EXT_CLK GPIOA
#define PIN_RX GPIO_Pin_0
#define PIN_RX_CH ADC_Channel_0
#define PORT_RX GPIOA
#define RCC_Per_RX RCC_AHB1Periph_GPIOA
#define PIN_RSSI GPIO_Pin_7
#define PIN_RSSI_CH ADC_Channel_7
#define PORT_RSSI GPIOA
#define RCC_Per_RSSI RCC_AHB1Periph_GPIOA
#define PIN_TX GPIO_Pin_4
#define PIN_TX_CH DAC_Channel_1
#elif defined(STM32F4_F4M)
/*
Pin definitions for MMDVM-F4M Pi-Hat F0DEI board:
PTT PB13 output
COSLED PB14 output
LED PB15 output
COS PC0 input
DSTAR PC7 output
DMR PC8 output
YSF PA8 output
P25 PC9 output
NXDN PB1 output
RX PA0 analog input
RSSI PA7 analog input
TX PA4 analog output
EXT_CLK PA15 input
*/
#define PIN_COS GPIO_Pin_0
#define PORT_COS GPIOC
#define RCC_Per_COS RCC_AHB1Periph_GPIOC
#define PIN_PTT GPIO_Pin_13
#define PORT_PTT GPIOB
#define RCC_Per_PTT RCC_AHB1Periph_GPIOB
#define PIN_COSLED GPIO_Pin_14
#define PORT_COSLED GPIOB
#define RCC_Per_COSLED RCC_AHB1Periph_GPIOB
#define PIN_LED GPIO_Pin_15
#define PORT_LED GPIOB
#define RCC_Per_LED RCC_AHB1Periph_GPIOB
#define PIN_P25 GPIO_Pin_9
#define PORT_P25 GPIOC
#define RCC_Per_P25 RCC_AHB1Periph_GPIOC
#define PIN_NXDN GPIO_Pin_1
#define PORT_NXDN GPIOB
#define RCC_Per_NXDN RCC_AHB1Periph_GPIOB
#define PIN_DSTAR GPIO_Pin_7
#define PORT_DSTAR GPIOC
#define RCC_Per_DSTAR RCC_AHB1Periph_GPIOC
#define PIN_DMR GPIO_Pin_8
#define PORT_DMR GPIOC
#define RCC_Per_DMR RCC_AHB1Periph_GPIOC
#define PIN_YSF GPIO_Pin_8
#define PORT_YSF GPIOA
#define RCC_Per_YSF RCC_AHB1Periph_GPIOA
#define PIN_EXT_CLK GPIO_Pin_15
#define SRC_EXT_CLK GPIO_PinSource15
#define PORT_EXT_CLK GPIOA
#define PIN_RX GPIO_Pin_0
#define PIN_RX_CH ADC_Channel_0
#define PORT_RX GPIOA
#define RCC_Per_RX RCC_AHB1Periph_GPIOA
#define PIN_RSSI GPIO_Pin_7
#define PIN_RSSI_CH ADC_Channel_7
#define PORT_RSSI GPIOA
#define RCC_Per_RSSI RCC_AHB1Periph_GPIOA
#define PIN_TX GPIO_Pin_4
#define PIN_TX_CH DAC_Channel_1
#elif defined(STM32F722_F7M)
/*
Pin definitions for MMDVM-F7M Pi-Hat F0DEI board:
PTT PB13 output
COSLED PB14 output
LED PB15 output
COS PC0 input
DSTAR PC7 output
DMR PC8 output
YSF PA8 output
P25 PC9 output
NXDN PB1 output
RX PA0 analog input
RSSI PA7 analog input
TX PA4 analog output
EXT_CLK PA15 input
*/
#define PIN_COS GPIO_Pin_0
#define PORT_COS GPIOC
#define RCC_Per_COS RCC_AHB1Periph_GPIOC
#define PIN_PTT GPIO_Pin_13
#define PORT_PTT GPIOB
#define RCC_Per_PTT RCC_AHB1Periph_GPIOB
#define PIN_COSLED GPIO_Pin_14
#define PORT_COSLED GPIOB
#define RCC_Per_COSLED RCC_AHB1Periph_GPIOB
#define PIN_LED GPIO_Pin_15
#define PORT_LED GPIOB
#define RCC_Per_LED RCC_AHB1Periph_GPIOB
#define PIN_P25 GPIO_Pin_9
#define PORT_P25 GPIOC
#define RCC_Per_P25 RCC_AHB1Periph_GPIOC
#define PIN_NXDN GPIO_Pin_1
#define PORT_NXDN GPIOB
#define RCC_Per_NXDN RCC_AHB1Periph_GPIOB
#define PIN_DSTAR GPIO_Pin_7
#define PORT_DSTAR GPIOC
#define RCC_Per_DSTAR RCC_AHB1Periph_GPIOC
#define PIN_DMR GPIO_Pin_8
#define PORT_DMR GPIOC
#define RCC_Per_DMR RCC_AHB1Periph_GPIOC
#define PIN_YSF GPIO_Pin_8
#define PORT_YSF GPIOA
#define RCC_Per_YSF RCC_AHB1Periph_GPIOA
#define PIN_EXT_CLK GPIO_Pin_15
#define SRC_EXT_CLK GPIO_PinSource15
#define PORT_EXT_CLK GPIOA
#define PIN_RX GPIO_Pin_0
#define PIN_RX_CH ADC_Channel_0
#define PORT_RX GPIOA
#define RCC_Per_RX RCC_AHB1Periph_GPIOA
#define PIN_RSSI GPIO_Pin_7
#define PIN_RSSI_CH ADC_Channel_7
#define PORT_RSSI GPIOA
#define RCC_Per_RSSI RCC_AHB1Periph_GPIOA
#define PIN_TX GPIO_Pin_4
#define PIN_TX_CH DAC_Channel_1
#elif defined(STM32F4_NUCLEO)
#if defined(STM32F4_NUCLEO_MORPHO_HEADER)
/*
Pin definitions for STM32F4 Nucleo boards (ST Morpho header):
PTT PB13 output CN10 Pin30
COSLED PB14 output CN10 Pin28
LED PA5 output CN10 Pin11
COS PB15 input CN10 Pin26
DSTAR PB10 output CN10 Pin25
DMR PB4 output CN10 Pin27
YSF PB5 output CN10 Pin29
P25 PB3 output CN10 Pin31
NXDN PA10 output CN10 Pin33
MDSTAR PC4 output CN10 Pin34
MDMR PC5 output CN10 Pin6
MYSF PC2 output CN7 Pin35
MP25 PC3 output CN7 Pin37
MNXDN PC6 output CN10 Pin4
RX PA0 analog input CN7 Pin28
RSSI PA1 analog input CN7 Pin30
TX PA4 analog output CN7 Pin32
EXT_CLK PA15 input CN7 Pin17
*/
#define PIN_COS GPIO_Pin_15
#define PORT_COS GPIOB
#define RCC_Per_COS RCC_AHB1Periph_GPIOB
@ -182,6 +449,10 @@ EXT_CLK PA15 input
#define PORT_P25 GPIOB
#define RCC_Per_P25 RCC_AHB1Periph_GPIOB
#define PIN_NXDN GPIO_Pin_10
#define PORT_NXDN GPIOA
#define RCC_Per_NXDN RCC_AHB1Periph_GPIOA
#define PIN_DSTAR GPIO_Pin_10
#define PORT_DSTAR GPIOB
#define RCC_Per_DSTAR RCC_AHB1Periph_GPIOB
@ -194,14 +465,305 @@ EXT_CLK PA15 input
#define PORT_YSF GPIOB
#define RCC_Per_YSF RCC_AHB1Periph_GPIOB
#if defined(STM32F4_NUCLEO_MODE_PINS)
#define PIN_MP25 GPIO_Pin_3
#define PORT_MP25 GPIOC
#define RCC_Per_MP25 RCC_AHB1Periph_GPIOC
#define PIN_MNXDN GPIO_Pin_6
#define PORT_MNXDN GPIOC
#define RCC_Per_MNXDN RCC_AHB1Periph_GPIOC
#define PIN_MDSTAR GPIO_Pin_4
#define PORT_MDSTAR GPIOC
#define RCC_Per_MDSTAR RCC_AHB1Periph_GPIOC
#define PIN_MDMR GPIO_Pin_5
#define PORT_MDMR GPIOC
#define RCC_Per_MDMR RCC_AHB1Periph_GPIOC
#define PIN_MYSF GPIO_Pin_2
#define PORT_MYSF GPIOC
#define RCC_Per_MYSF RCC_AHB1Periph_GPIOC
#endif
#define PIN_EXT_CLK GPIO_Pin_15
#define SRC_EXT_CLK GPIO_PinSource15
#define PORT_EXT_CLK GPIOA
#define PIN_RX GPIO_Pin_0
#define PIN_RX_CH ADC_Channel_0
#define PORT_RX GPIOA
#define RCC_Per_RX RCC_AHB1Periph_GPIOA
#define PIN_RSSI GPIO_Pin_1
#define PIN_RSSI_CH ADC_Channel_1
#define PORT_RSSI GPIOA
#define RCC_Per_RSSI RCC_AHB1Periph_GPIOA
#define PIN_TX GPIO_Pin_4
#define PIN_TX_CH DAC_Channel_1
#elif defined(STM32F4_NUCLEO_ARDUINO_HEADER)
/*
Pin definitions for STM32F4 Nucleo boards (Arduino header):
PTT PB10 output CN9 Pin7
COSLED PB3 output CN9 Pin4
LED PB5 output CN9 Pin5
COS PB4 input CN9 Pin6
DSTAR PA1 output CN8 Pin2
DMR PA4 output CN8 Pin3
YSF PB0 output CN8 Pin4
P25 PC1 output CN8 Pin5
NXDN PA3 output CN9 Pin1
RX PA0 analog input CN8 Pin1
RSSI PC0 analog input CN8 Pin6
TX PA5 analog output CN5 Pin6
EXT_CLK PB8 input CN5 Pin10
*/
#define PIN_COS GPIO_Pin_4
#define PORT_COS GPIOB
#define RCC_Per_COS RCC_AHB1Periph_GPIOB
#define PIN_PTT GPIO_Pin_10
#define PORT_PTT GPIOB
#define RCC_Per_PTT RCC_AHB1Periph_GPIOB
#define PIN_COSLED GPIO_Pin_3
#define PORT_COSLED GPIOB
#define RCC_Per_COSLED RCC_AHB1Periph_GPIOB
#define PIN_LED GPIO_Pin_5
#define PORT_LED GPIOB
#define RCC_Per_LED RCC_AHB1Periph_GPIOB
#define PIN_P25 GPIO_Pin_1
#define PORT_P25 GPIOC
#define RCC_Per_P25 RCC_AHB1Periph_GPIOC
#define PIN_NXDN GPIO_Pin_3
#define PORT_NXDN GPIOA
#define RCC_Per_NXDN RCC_AHB1Periph_GPIOA
#define PIN_DSTAR GPIO_Pin_1
#define PORT_DSTAR GPIOA
#define RCC_Per_DSTAR RCC_AHB1Periph_GPIOA
#define PIN_DMR GPIO_Pin_4
#define PORT_DMR GPIOA
#define RCC_Per_DMR RCC_AHB1Periph_GPIOA
#define PIN_YSF GPIO_Pin_0
#define PORT_YSF GPIOB
#define RCC_Per_YSF RCC_AHB1Periph_GPIOB
#define PIN_EXT_CLK GPIO_Pin_8
#define SRC_EXT_CLK GPIO_PinSource8
#define PORT_EXT_CLK GPIOB
#define PIN_RX GPIO_Pin_0
#define PIN_RX_CH ADC_Channel_0
#define PORT_RX GPIOA
#define RCC_Per_RX RCC_AHB1Periph_GPIOA
#define PIN_RSSI GPIO_Pin_0
#define PIN_RSSI_CH ADC_Channel_10
#define PORT_RSSI GPIOC
#define RCC_Per_RSSI RCC_AHB1Periph_GPIOC
#define PIN_TX GPIO_Pin_5
#define PIN_TX_CH DAC_Channel_2
#else
#error "Either STM32F4_DISCOVERY, STM32F4_PI or STM32F4_NUCLEO need to be defined"
#error "Either STM32F4_NUCLEO_MORPHO_HEADER or STM32F4_NUCLEO_ARDUINO_HEADER need to be defined in Config.h"
#endif
#elif defined(STM32F7_NUCLEO)
/*
Pin definitions for STM32F7 Nucleo boards (ST Morpho header):
PTT PB13 output CN12 Pin30
COSLED PB14 output CN12 Pin28
LED PA5 output CN12 Pin11
COS PB15 input CN12 Pin26
DSTAR PB10 output CN12 Pin25
DMR PB4 output CN12 Pin27
YSF PB5 output CN12 Pin29
P25 PB3 output CN12 Pin31
NXDN PA10 output CN12 Pin33
MDSTAR PC4 output CN12 Pin34
MDMR PC5 output CN12 Pin6
MYSF PC2 output CN11 Pin35
MP25 PC3 output CN11 Pin37
MNXDN PC6 output CN12 Pin4
RX PA0 analog input CN11 Pin28
RSSI PA1 analog input CN11 Pin30
TX PA4 analog output CN11 Pin32
EXT_CLK PA15 input CN11 Pin17
*/
#define PIN_COS GPIO_Pin_15
#define PORT_COS GPIOB
#define RCC_Per_COS RCC_AHB1Periph_GPIOB
#define PIN_PTT GPIO_Pin_13
#define PORT_PTT GPIOB
#define RCC_Per_PTT RCC_AHB1Periph_GPIOB
#define PIN_COSLED GPIO_Pin_14
#define PORT_COSLED GPIOB
#define RCC_Per_COSLED RCC_AHB1Periph_GPIOB
#define PIN_LED GPIO_Pin_5
#define PORT_LED GPIOA
#define RCC_Per_LED RCC_AHB1Periph_GPIOA
#define PIN_P25 GPIO_Pin_3
#define PORT_P25 GPIOB
#define RCC_Per_P25 RCC_AHB1Periph_GPIOB
#define PIN_NXDN GPIO_Pin_10
#define PORT_NXDN GPIOA
#define RCC_Per_NXDN RCC_AHB1Periph_GPIOA
#define PIN_DSTAR GPIO_Pin_10
#define PORT_DSTAR GPIOB
#define RCC_Per_DSTAR RCC_AHB1Periph_GPIOB
#define PIN_DMR GPIO_Pin_4
#define PORT_DMR GPIOB
#define RCC_Per_DMR RCC_AHB1Periph_GPIOB
#define PIN_YSF GPIO_Pin_5
#define PORT_YSF GPIOB
#define RCC_Per_YSF RCC_AHB1Periph_GPIOB
#if defined(STM32F4_NUCLEO_MODE_PINS)
#define PIN_MP25 GPIO_Pin_3
#define PORT_MP25 GPIOC
#define RCC_Per_MP25 RCC_AHB1Periph_GPIOC
#define PIN_MNXDN GPIO_Pin_6
#define PORT_MNXDN GPIOC
#define RCC_Per_MNXDN RCC_AHB1Periph_GPIOC
#define PIN_MDSTAR GPIO_Pin_4
#define PORT_MDSTAR GPIOC
#define RCC_Per_MDSTAR RCC_AHB1Periph_GPIOC
#define PIN_MDMR GPIO_Pin_5
#define PORT_MDMR GPIOC
#define RCC_Per_MDMR RCC_AHB1Periph_GPIOC
#define PIN_MYSF GPIO_Pin_2
#define PORT_MYSF GPIOC
#define RCC_Per_MYSF RCC_AHB1Periph_GPIOC
#endif
#define PIN_EXT_CLK GPIO_Pin_15
#define SRC_EXT_CLK GPIO_PinSource15
#define PORT_EXT_CLK GPIOA
#define PIN_RX GPIO_Pin_0
#define PIN_RX_CH ADC_Channel_0
#define PORT_RX GPIOA
#define RCC_Per_RX RCC_AHB1Periph_GPIOA
#define PIN_RSSI GPIO_Pin_1
#define PIN_RSSI_CH ADC_Channel_1
#define PORT_RSSI GPIOA
#define RCC_Per_RSSI RCC_AHB1Periph_GPIOA
#define PIN_TX GPIO_Pin_4
#define PIN_TX_CH DAC_Channel_1
#elif defined(STM32F4_DVM)
/*
Pin definitions for STM32F4 STM32-DVM rev 3 Board:
COS PB13 input
PTT PB12 output
COSLED PB4 output
LED PB3 output
P25 PB8 output
NXDN PB9 output
DSTAR PB6 output
DMR PB5 output
YSF PB7 output
RX PB0 analog input
RSSI PB1 analog input
TX PA4 analog output
EXT_CLK PA15 input
*/
#define PIN_COS GPIO_Pin_13
#define PORT_COS GPIOB
#define RCC_Per_COS RCC_AHB1Periph_GPIOB
#define PIN_PTT GPIO_Pin_12
#define PORT_PTT GPIOB
#define RCC_Per_PTT RCC_AHB1Periph_GPIOB
#define PIN_COSLED GPIO_Pin_4
#define PORT_COSLED GPIOB
#define RCC_Per_COSLED RCC_AHB1Periph_GPIOB
#define PIN_LED GPIO_Pin_3
#define PORT_LED GPIOB
#define RCC_Per_LED RCC_AHB1Periph_GPIOB
#define PIN_P25 GPIO_Pin_8
#define PORT_P25 GPIOB
#define RCC_Per_P25 RCC_AHB1Periph_GPIOB
#define PIN_NXDN GPIO_Pin_9
#define PORT_NXDN GPIOB
#define RCC_Per_NXDN RCC_AHB1Periph_GPIOB
#define PIN_DSTAR GPIO_Pin_6
#define PORT_DSTAR GPIOB
#define RCC_Per_DSTAR RCC_AHB1Periph_GPIOB
#define PIN_DMR GPIO_Pin_5
#define PORT_DMR GPIOB
#define RCC_Per_DMR RCC_AHB1Periph_GPIOB
#define PIN_YSF GPIO_Pin_7
#define PORT_YSF GPIOB
#define RCC_Per_YSF RCC_AHB1Periph_GPIOB
#define PIN_EXT_CLK GPIO_Pin_15
#define SRC_EXT_CLK GPIO_PinSource15
#define PORT_EXT_CLK GPIOA
#define PIN_RX GPIO_Pin_0
#define PIN_RX_CH ADC_Channel_8
#define PORT_RX GPIOB
#define RCC_Per_RX RCC_AHB1Periph_GPIOB
#define PIN_RSSI GPIO_Pin_1
#define PIN_RSSI_CH ADC_Channel_9
#define PORT_RSSI GPIOB
#define RCC_Per_RSSI RCC_AHB1Periph_GPIOB
#define PIN_TX GPIO_Pin_4
#define PIN_TX_CH DAC_Channel_1
#else
#error "Either STM32F4_DISCOVERY, STM32F4_PI, STM32F722_PI, STM32F4_F4M, STM32F722_F7M, STM32F4_DVM, STM32F4_NUCLEO or STM32F7_NUCLEO need to be defined"
#endif
const uint16_t DC_OFFSET = 2048U;
@ -213,7 +775,7 @@ extern "C" {
void TIM2_IRQHandler() {
if (TIM_GetITStatus(TIM2, TIM_IT_Update) != RESET) {
TIM_ClearITPendingBit(TIM2, TIM_IT_Update);
io.interrupt(0U);
io.interrupt();
}
}
}
@ -222,7 +784,7 @@ void CIO::initInt()
{
GPIO_InitTypeDef GPIO_InitStruct;
GPIO_StructInit(&GPIO_InitStruct);
GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStruct.GPIO_Speed = GPIO_Fast_Speed;
GPIO_InitStruct.GPIO_OType = GPIO_OType_PP;
GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN;
@ -274,13 +836,51 @@ void CIO::initInt()
GPIO_InitStruct.GPIO_Pin = PIN_P25;
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_OUT;
GPIO_Init(PORT_P25, &GPIO_InitStruct);
// NXDN pin
RCC_AHB1PeriphClockCmd(RCC_Per_NXDN, ENABLE);
GPIO_InitStruct.GPIO_Pin = PIN_NXDN;
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_OUT;
GPIO_Init(PORT_NXDN, &GPIO_InitStruct);
#endif
#if defined(STM32F4_NUCLEO_MODE_PINS) && defined(STM32F4_NUCLEO_MORPHO_HEADER) && defined(STM32F4_NUCLEO)
// DSTAR mode pin
RCC_AHB1PeriphClockCmd(RCC_Per_MDSTAR, ENABLE);
GPIO_InitStruct.GPIO_Pin = PIN_MDSTAR;
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_OUT;
GPIO_Init(PORT_MDSTAR, &GPIO_InitStruct);
// DMR mode pin
RCC_AHB1PeriphClockCmd(RCC_Per_MDMR, ENABLE);
GPIO_InitStruct.GPIO_Pin = PIN_MDMR;
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_OUT;
GPIO_Init(PORT_MDMR, &GPIO_InitStruct);
// YSF mode pin
RCC_AHB1PeriphClockCmd(RCC_Per_MYSF, ENABLE);
GPIO_InitStruct.GPIO_Pin = PIN_MYSF;
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_OUT;
GPIO_Init(PORT_MYSF, &GPIO_InitStruct);
// P25 mode pin
RCC_AHB1PeriphClockCmd(RCC_Per_MP25, ENABLE);
GPIO_InitStruct.GPIO_Pin = PIN_MP25;
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_OUT;
GPIO_Init(PORT_MP25, &GPIO_InitStruct);
// NXDN mode pin
RCC_AHB1PeriphClockCmd(RCC_Per_MNXDN, ENABLE);
GPIO_InitStruct.GPIO_Pin = PIN_MNXDN;
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_OUT;
GPIO_Init(PORT_MNXDN, &GPIO_InitStruct);
#endif
}
void CIO::startInt()
{
if ((ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) != RESET))
io.interrupt(0U);
io.interrupt();
// Init the ADC
GPIO_InitTypeDef GPIO_InitStruct;
@ -291,22 +891,25 @@ void CIO::startInt()
ADC_CommonStructInit(&ADC_CommonInitStructure);
ADC_StructInit(&ADC_InitStructure);
// Enable ADC clock
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
#if defined(SEND_RSSI_DATA)
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1 | RCC_APB2Periph_ADC2, ENABLE);
#else
// Enable ADC1 clock
RCC_AHB1PeriphClockCmd(RCC_Per_RX, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);
#endif
#if defined(SEND_RSSI_DATA)
GPIO_InitStruct.GPIO_Pin = PIN_RX | PIN_RSSI;
#else
// Enable ADC1 GPIO
GPIO_InitStruct.GPIO_Pin = PIN_RX;
#endif
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AN;
GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL ;
GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_Init(PORT_RX, &GPIO_InitStruct);
#if defined(SEND_RSSI_DATA)
// Enable ADC2 clock
RCC_AHB1PeriphClockCmd(RCC_Per_RSSI, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC2, ENABLE);
// Enable ADC2 GPIO
GPIO_InitStruct.GPIO_Pin = PIN_RSSI;
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AN;
GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL ;
GPIO_Init(PORT_RSSI, &GPIO_InitStruct);
#endif
// Init ADCs in dual mode (RSSI), div clock by two
#if defined(SEND_RSSI_DATA)
@ -358,8 +961,8 @@ void CIO::startInt()
// DAC Periph clock enable
RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC, ENABLE);
// GPIO CONFIGURATION of DAC Pins (PA4)
GPIO_InitStruct.GPIO_Pin = GPIO_Pin_4;
// GPIO CONFIGURATION of DAC Pin
GPIO_InitStruct.GPIO_Pin = PIN_TX;
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AN;
GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(GPIOA, &GPIO_InitStruct);
@ -367,38 +970,39 @@ void CIO::startInt()
DAC_InitStructure.DAC_Trigger = DAC_Trigger_None;
DAC_InitStructure.DAC_WaveGeneration = DAC_WaveGeneration_None;
DAC_InitStructure.DAC_OutputBuffer = DAC_OutputBuffer_Enable;
DAC_Init(DAC_Channel_1, &DAC_InitStructure);
DAC_Cmd(DAC_Channel_1, ENABLE);
DAC_Init(PIN_TX_CH, &DAC_InitStructure);
DAC_Cmd(PIN_TX_CH, ENABLE);
// Init the timer
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
#if defined(EXTERNAL_OSC)
// Configure GPIO PA15 as external TIM2 clock source
GPIO_PinAFConfig(GPIOA, GPIO_PinSource15, GPIO_AF_TIM2);
GPIO_InitStruct.GPIO_Pin = GPIO_Pin_15;
#if defined(EXTERNAL_OSC) && !(defined(STM32F4_PI) || defined(STM32F722_PI))
// Configure a GPIO as external TIM2 clock source
GPIO_PinAFConfig(PORT_EXT_CLK, SRC_EXT_CLK, GPIO_AF_TIM2);
GPIO_InitStruct.GPIO_Pin = PIN_EXT_CLK;
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF;
GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_Init(PORT_EXT_CLK, &GPIO_InitStruct);
#endif
TIM_TimeBaseInitTypeDef timerInitStructure;
TIM_TimeBaseStructInit (&timerInitStructure);
// TIM2 output frequency
#if defined(EXTERNAL_OSC)
#if defined(EXTERNAL_OSC) && !(defined(STM32F4_PI) || defined(STM32F722_PI))
timerInitStructure.TIM_Prescaler = (uint16_t) ((EXTERNAL_OSC/(2*SAMP_FREQ)) - 1);
timerInitStructure.TIM_Period = 1;
#else
timerInitStructure.TIM_Prescaler = (uint16_t) ((SystemCoreClock/(4*SAMP_FREQ)) - 1);
timerInitStructure.TIM_Prescaler = (uint16_t) ((SystemCoreClock/(6*SAMP_FREQ)) - 1);
timerInitStructure.TIM_Period = 2;
#endif
timerInitStructure.TIM_CounterMode = TIM_CounterMode_Up;
timerInitStructure.TIM_Period = 1;
timerInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;
timerInitStructure.TIM_RepetitionCounter = 0;
TIM_TimeBaseInit(TIM2, &timerInitStructure);
#if defined(EXTERNAL_OSC)
// Enable external clock (PA15)
#if defined(EXTERNAL_OSC) && !(defined(STM32F4_PI) || defined(STM32F722_PI))
// Enable external clock
TIM_ETRClockMode2Config(TIM2, TIM_ExtTRGPSC_OFF, TIM_ExtTRGPolarity_NonInverted, 0x00);
#else
// Enable internal clock
@ -421,7 +1025,7 @@ void CIO::startInt()
GPIO_SetBits(PORT_LED, PIN_LED);
}
void CIO::interrupt(uint8_t source)
void CIO::interrupt()
{
uint8_t control = MARK_NONE;
uint16_t sample = DC_OFFSET;
@ -430,7 +1034,11 @@ void CIO::interrupt(uint8_t source)
m_txBuffer.get(sample, control);
// Send the value to the DAC
#if defined(STM32F4_NUCLEO) && defined(STM32F4_NUCLEO_ARDUINO_HEADER)
DAC_SetChannel2Data(DAC_Align_12b_R, sample);
#else
DAC_SetChannel1Data(DAC_Align_12b_R, sample);
#endif
// Read value from ADC1 and ADC2
if ((ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET)) {
@ -455,7 +1063,7 @@ void CIO::interrupt(uint8_t source)
bool CIO::getCOSInt()
{
return GPIO_ReadOutputDataBit(PORT_COS, PIN_COS) == Bit_SET;
return GPIO_ReadInputDataBit(PORT_COS, PIN_COS) == Bit_SET;
}
void CIO::setLEDInt(bool on)
@ -476,22 +1084,67 @@ void CIO::setCOSInt(bool on)
void CIO::setDStarInt(bool on)
{
GPIO_WriteBit(PORT_DSTAR, PIN_DSTAR, on ? Bit_SET : Bit_RESET);
#if defined(STM32F4_NUCLEO_MODE_PINS) && defined(STM32F4_NUCLEO_MORPHO_HEADER) && defined(STM32F4_NUCLEO)
GPIO_WriteBit(PORT_MDSTAR, PIN_MDSTAR, on ? Bit_SET : Bit_RESET);
#endif
}
void CIO::setDMRInt(bool on)
{
GPIO_WriteBit(PORT_DMR, PIN_DMR, on ? Bit_SET : Bit_RESET);
#if defined(STM32F4_NUCLEO_MODE_PINS) && defined(STM32F4_NUCLEO_MORPHO_HEADER) && defined(STM32F4_NUCLEO)
GPIO_WriteBit(PORT_MDMR, PIN_MDMR, on ? Bit_SET : Bit_RESET);
#endif
}
void CIO::setYSFInt(bool on)
{
GPIO_WriteBit(PORT_YSF, PIN_YSF, on ? Bit_SET : Bit_RESET);
#if defined(STM32F4_NUCLEO_MODE_PINS) && defined(STM32F4_NUCLEO_MORPHO_HEADER) && defined(STM32F4_NUCLEO)
GPIO_WriteBit(PORT_MYSF, PIN_MYSF, on ? Bit_SET : Bit_RESET);
#endif
}
void CIO::setP25Int(bool on)
{
GPIO_WriteBit(PORT_P25, PIN_P25, on ? Bit_SET : Bit_RESET);
#if defined(STM32F4_NUCLEO_MODE_PINS) && defined(STM32F4_NUCLEO_MORPHO_HEADER) && defined(STM32F4_NUCLEO)
GPIO_WriteBit(PORT_MP25, PIN_MP25, on ? Bit_SET : Bit_RESET);
#endif
}
void CIO::setNXDNInt(bool on)
{
GPIO_WriteBit(PORT_NXDN, PIN_NXDN, on ? Bit_SET : Bit_RESET);
#if defined(STM32F4_NUCLEO_MODE_PINS) && defined(STM32F4_NUCLEO_MORPHO_HEADER) && defined(STM32F4_NUCLEO)
GPIO_WriteBit(PORT_MNXDN, PIN_MNXDN, on ? Bit_SET : Bit_RESET);
#endif
}
// Simple delay function for STM32
// Example from: http://thehackerworkshop.com/?p=1209
void CIO::delayInt(unsigned int dly)
{
#if defined(STM32F7XX)
unsigned int loopsPerMillisecond = (SystemCoreClock/1000);
#else
unsigned int loopsPerMillisecond = (SystemCoreClock/1000) / 3;
#endif
for (; dly > 0; dly--)
{
asm volatile //this routine waits (approximately) one millisecond
(
"mov r3, %[loopsPerMillisecond] \n\t" //load the initial loop counter
"loop: \n\t"
"subs r3, #1 \n\t"
"bne loop \n\t"
: //empty output list
: [loopsPerMillisecond] "r" (loopsPerMillisecond) //input to the asm routine
: "r3", "cc" //clobber list
);
}
}
#endif

442
IOSTM_CMSIS.cpp Normal file
View File

@ -0,0 +1,442 @@
/*
* Copyright (C) 2016 by Jim McLaughlin KI6ZUM
* Copyright (C) 2016, 2017 by Andy Uribe CA6JAU
* Copyright (C) 2017,2018 by Jonathan Naylor G4KLX
* Copyright (C) 2017 by Wojciech Krutnik N0CALL
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "Config.h"
#include "Globals.h"
#include "IO.h"
#if defined(STM32F1)
#if defined(STM32F1_POG)
/*
Pin definitions for STM32F1 POG Board:
PTT PB12 output
COSLED PB5 output
LED PB4 output
COS PB13 input/PD
DSTAR PB7 output
DMR PB6 output
YSF PB8 output
P25 PB9 output
NXDN PB10 output
RX PB0 analog input (ADC1_8)
RSSI PB1 analog input (ADC2_9)
TX PA4 analog output (DAC_OUT1)
EXT_CLK PA15 input (AF: TIM2_CH1_ETR)
USART1_TXD PA9 output (AF)
USART1_RXD PA10 input (AF)
*/
#define PIN_PTT 12
#define PORT_PTT GPIOB
#define BB_PTT *((bitband_t)BITBAND_PERIPH(&PORT_PTT->ODR, PIN_PTT))
#define PIN_COSLED 5
#define PORT_COSLED GPIOB
#define BB_COSLED *((bitband_t)BITBAND_PERIPH(&PORT_COSLED->ODR, PIN_COSLED))
#define PIN_LED 4
#define PORT_LED GPIOB
#define BB_LED *((bitband_t)BITBAND_PERIPH(&PORT_LED->ODR, PIN_LED))
#define PIN_COS 13
#define PORT_COS GPIOB
#define BB_COS *((bitband_t)BITBAND_PERIPH(&PORT_COS->IDR, PIN_COS))
#define PIN_DSTAR 7
#define PORT_DSTAR GPIOB
#define BB_DSTAR *((bitband_t)BITBAND_PERIPH(&PORT_DSTAR->ODR, PIN_DSTAR))
#define PIN_DMR 6
#define PORT_DMR GPIOB
#define BB_DMR *((bitband_t)BITBAND_PERIPH(&PORT_DMR->ODR, PIN_DMR))
#define PIN_YSF 8
#define PORT_YSF GPIOB
#define BB_YSF *((bitband_t)BITBAND_PERIPH(&PORT_YSF->ODR, PIN_YSF))
#define PIN_P25 9
#define PORT_P25 GPIOB
#define BB_P25 *((bitband_t)BITBAND_PERIPH(&PORT_P25->ODR, PIN_P25))
#define PIN_NXDN 10
#define PORT_NXDN GPIOB
#define BB_NXDN *((bitband_t)BITBAND_PERIPH(&PORT_NXDN->ODR, PIN_NXDN))
#define PIN_RX 0
#define PIN_RX_ADC_CH 8
#define PORT_RX GPIOB
#define PIN_RSSI 1
#define PIN_RSSI_ADC_CH 9
#define PORT_RSSI GPIOB
#define PIN_TX 4
#define PIN_TX_DAC_CH 1
#define PORT_TX GPIOA
#define PIN_EXT_CLK 15
#define SRC_EXT_CLK 15
#define PORT_EXT_CLK GPIOA
#define PIN_USART1_TXD 9
#define PORT_USART1_TXD GPIOA
#define PIN_USART1_RXD 10
#define PORT_USART1_RXD GPIOA
#else // defined(STM32F1_POG)
#error "Either STM32F1_POG, or sth need to be defined"
#endif // defined(STM32F1_POG)
const uint16_t DC_OFFSET = 2048U;
// Sampling frequency
#define SAMP_FREQ 48000
extern "C" {
void TIM2_IRQHandler() {
if ((TIM2->SR & TIM_SR_UIF) == TIM_SR_UIF) {
TIM2->SR = ~TIM_SR_UIF; // clear UI flag
io.interrupt();
}
}
}
void delay(uint32_t cnt)
{
while(cnt--)
asm("nop");
}
// source: http://www.freddiechopin.info/
void GPIOConfigPin(GPIO_TypeDef *port_ptr, uint32_t pin, uint32_t mode_cnf_value)
{
volatile uint32_t *cr_ptr;
uint32_t cr_value;
cr_ptr = &port_ptr->CRL; // configuration of pins [0,7] is in CRL
if (pin >= 8) // is pin in [8; 15]?
{ // configuration of pins [8,15] is in CRH
cr_ptr++; // advance to next struct element CRL -> CRH
pin -= 8; // crop the pin number
}
cr_value = *cr_ptr; // localize the CRL / CRH value
cr_value &= ~(0xF << (pin * 4)); // clear the MODE and CNF fields (now that pin is an analog input)
cr_value |= (mode_cnf_value << (pin * 4)); // save new MODE and CNF value for desired pin
*cr_ptr = cr_value; // save localized value to CRL / CRL
}
#if defined(STM32F1_POG)
void FancyLEDEffect()
{
bitband_t foo[] = {&BB_LED, &BB_COSLED, &BB_PTT, &BB_DMR, &BB_DSTAR, &BB_YSF, &BB_P25};
for(int i=0; i<7; i++){
*foo[i] = 0x01;
}
GPIOConfigPin(PORT_USART1_TXD, PIN_USART1_TXD, GPIO_CRL_MODE0_1);
*((bitband_t)BITBAND_PERIPH(&PORT_USART1_TXD->ODR, PIN_USART1_TXD)) = 0x00;
delay(SystemCoreClock/1000*100);
for(int i=0; i<7; i++){
*foo[i] = 0x00;
}
*((bitband_t)BITBAND_PERIPH(&PORT_USART1_TXD->ODR, PIN_USART1_TXD)) = 0x01;
delay(SystemCoreClock/1000*20);
*((bitband_t)BITBAND_PERIPH(&PORT_USART1_TXD->ODR, PIN_USART1_TXD)) = 0x00;
delay(SystemCoreClock/1000*10);
*((bitband_t)BITBAND_PERIPH(&PORT_USART1_TXD->ODR, PIN_USART1_TXD)) = 0x01;
*foo[0] = 0x01;
for(int i=1; i<7; i++){
delay(SystemCoreClock/1000*10);
*foo[i-1] = 0x00;
*foo[i] = 0x01;
}
for(int i=5; i>=0; i--){
delay(SystemCoreClock/1000*10);
*foo[i+1] = 0x00;
*foo[i] = 0x01;
}
delay(SystemCoreClock/1000*10);
*foo[5+1-6] = 0x00;
*((bitband_t)BITBAND_PERIPH(&PORT_USART1_TXD->ODR, PIN_USART1_TXD)) = 0x00;
delay(SystemCoreClock/1000*10);
*((bitband_t)BITBAND_PERIPH(&PORT_USART1_TXD->ODR, PIN_USART1_TXD)) = 0x01;
GPIOConfigPin(PORT_USART1_TXD, PIN_USART1_TXD, GPIO_CRL_MODE0_1|GPIO_CRL_CNF0_1);
delay(SystemCoreClock/1000*50);
}
#endif
static inline void GPIOInit()
{
RCC->APB2ENR |= RCC_APB2ENR_IOPAEN | RCC_APB2ENR_IOPBEN
| RCC_APB2ENR_IOPCEN | RCC_APB2ENR_IOPDEN
| RCC_APB2ENR_AFIOEN; // enable all GPIOs
// set all ports to input with pull-down
GPIOA->CRL = 0x88888888;
GPIOA->CRH = 0x88888888;
GPIOA->ODR = 0;
GPIOB->CRL = 0x88888888;
GPIOB->CRH = 0x88888888;
GPIOB->ODR = 0;
GPIOC->CRL = 0x88888888;
GPIOC->CRH = 0x88888888;
GPIOC->ODR = 0;
GPIOD->CRL = 0x88888888;
GPIOD->CRH = 0x88888888;
GPIOD->ODR = 0;
// configure ports
GPIOConfigPin(PORT_PTT, PIN_PTT, GPIO_CRL_MODE0_1);
GPIOConfigPin(PORT_COSLED, PIN_COSLED, GPIO_CRL_MODE0_1);
GPIOConfigPin(PORT_LED, PIN_LED, GPIO_CRL_MODE0_1);
GPIOConfigPin(PORT_COS, PIN_COS, GPIO_CRL_CNF0_1);
GPIOConfigPin(PORT_DSTAR, PIN_DSTAR, GPIO_CRL_MODE0_1);
GPIOConfigPin(PORT_DMR, PIN_DMR, GPIO_CRL_MODE0_1);
GPIOConfigPin(PORT_YSF, PIN_YSF, GPIO_CRL_MODE0_1);
GPIOConfigPin(PORT_P25, PIN_P25, GPIO_CRL_MODE0_1);
GPIOConfigPin(PORT_NXDN, PIN_NXDN, GPIO_CRL_MODE0_1);
GPIOConfigPin(PORT_RX, PIN_RX, 0);
#if defined(SEND_RSSI_DATA)
GPIOConfigPin(PORT_RSSI, PIN_RSSI, 0);
#endif
GPIOConfigPin(PORT_TX, PIN_TX, 0);
#if defined(EXTERNAL_OSC)
#if defined(STM32F1_POG)
GPIOConfigPin(PORT_EXT_CLK, PIN_EXT_CLK, GPIO_CRL_CNF0_0);
AFIO->MAPR = (AFIO->MAPR & ~AFIO_MAPR_TIM2_REMAP) | AFIO_MAPR_TIM2_REMAP_0;
#endif
#endif
GPIOConfigPin(PORT_USART1_TXD, PIN_USART1_TXD, GPIO_CRL_MODE0_1|GPIO_CRL_CNF0_1);
GPIOConfigPin(PORT_USART1_RXD, PIN_USART1_RXD, GPIO_CRL_CNF0_0);
AFIO->MAPR = (AFIO->MAPR & ~AFIO_MAPR_SWJ_CFG) | AFIO_MAPR_SWJ_CFG_1;
}
static inline void ADCInit()
{
RCC->CFGR = (RCC->CFGR & ~RCC_CFGR_ADCPRE_Msk)
| RCC_CFGR_ADCPRE_DIV6; // ADC clock divided by 6 (72MHz/6 = 12MHz)
RCC->APB2ENR |= RCC_APB2ENR_ADC1EN;
#if defined(SEND_RSSI_DATA)
RCC->APB2ENR |= RCC_APB2ENR_ADC2EN;
#endif
// Init ADCs in dual mode (RSSI)
#if defined(SEND_RSSI_DATA)
ADC1->CR1 = ADC_CR1_DUALMOD_1|ADC_CR1_DUALMOD_2; // Regular simultaneous mode
#endif
// Set sampling time to 7.5 cycles
if (PIN_RX_ADC_CH < 10) {
ADC1->SMPR2 = ADC_SMPR2_SMP0_0 << (3*PIN_RX_ADC_CH);
} else {
ADC1->SMPR1 = ADC_SMPR1_SMP10_0 << (3*PIN_RX_ADC_CH);
}
#if defined(SEND_RSSI_DATA)
if (PIN_RSSI_ADC_CH < 10) {
ADC2->SMPR2 = ADC_SMPR2_SMP0_0 << (3*PIN_RSSI_ADC_CH);
} else {
ADC2->SMPR1 = ADC_SMPR1_SMP10_0 << (3*PIN_RSSI_ADC_CH);
}
#endif
// Set conversion channel (single conversion)
ADC1->SQR3 = PIN_RX_ADC_CH;
#if defined(SEND_RSSI_DATA)
ADC2->SQR3 = PIN_RSSI_ADC_CH;
#endif
// Enable ADC
ADC1->CR2 |= ADC_CR2_ADON;
#if defined(SEND_RSSI_DATA)
// Enable ADC2
ADC2->CR2 |= ADC_CR2_ADON;
#endif
// Start calibration
delay(6*2);
ADC1->CR2 |= ADC_CR2_CAL;
while((ADC1->CR2 & ADC_CR2_CAL) == ADC_CR2_CAL)
;
#if defined(SEND_RSSI_DATA)
ADC2->CR2 |= ADC_CR2_CAL;
while((ADC2->CR2 & ADC_CR2_CAL) == ADC_CR2_CAL)
;
#endif
// Trigger first conversion
ADC1->CR2 |= ADC_CR2_ADON;
#if defined(SEND_RSSI_DATA)
ADC2->CR2 |= ADC_CR2_ADON;
#endif
}
static inline void DACInit()
{
RCC->APB1ENR |= RCC_APB1ENR_DACEN;
DAC->CR = DAC_CR_EN1;
}
static inline void TimerInit()
{
RCC->APB1ENR |= RCC_APB1ENR_TIM2EN;
#if defined(EXTERNAL_OSC)
// Enable external clock, prescaler /4
TIM2->SMCR = TIM_SMCR_ECE | TIM_SMCR_ETPS_1;
#endif
// TIM2 output frequency
TIM2->PSC = 0;
#if defined(EXTERNAL_OSC)
// TimerCount = ExternalOsc
// /4 (external clock prescaler)
// /SAMP_FREQ
TIM2->ARR = (uint16_t) ((EXTERNAL_OSC/(4*SAMP_FREQ)) - 1);
#else
TIM2->ARR = (uint16_t) ((SystemCoreClock/(SAMP_FREQ)) - 1);
#endif
// Enable TIse 1%-tolerance comM2 interrupt
TIM2->DIER = TIM_DIER_UIE;
NVIC_EnableIRQ(TIM2_IRQn);
// Enable TIM2
TIM2->CR1 |= TIM_CR1_CEN;
}
void CIO::initInt()
{
GPIOInit();
ADCInit();
DACInit();
#if defined(STM32F1_POG)
FancyLEDEffect();
#endif
}
void CIO::startInt()
{
TimerInit();
BB_COSLED = 0;
BB_LED = 1;
}
void CIO::interrupt()
{
uint8_t control = MARK_NONE;
uint16_t sample = DC_OFFSET;
uint16_t rawRSSI = 0U;
bitband_t eoc = (bitband_t)BITBAND_PERIPH(&ADC1->SR, ADC_SR_EOS_Pos);
bitband_t adon = (bitband_t)BITBAND_PERIPH(&ADC1->CR2, ADC_CR2_ADON_Pos);
#if defined(SEND_RSSI_DATA)
bitband_t rssi_adon = (bitband_t)BITBAND_PERIPH(&ADC2->CR2, ADC_CR2_ADON_Pos);
#endif
if (*eoc) {
// trigger next conversion
*adon = 1;
#if defined(SEND_RSSI_DATA)
*rssi_adon = 1;
#endif
m_txBuffer.get(sample, control);
DAC->DHR12R1 = sample; // Send the value to the DAC
// Read value from ADC1 and ADC2
sample = ADC1->DR; // read conversion result; EOC is cleared by this read
m_rxBuffer.put(sample, control);
#if defined(SEND_RSSI_DATA)
rawRSSI = ADC2->DR;
m_rssiBuffer.put(rawRSSI);
#endif
m_watchdog++;
}
}
bool CIO::getCOSInt()
{
return BB_COS;
}
void CIO::setLEDInt(bool on)
{
BB_LED = !!on;
}
void CIO::setPTTInt(bool on)
{
BB_PTT = !!on;
}
void CIO::setCOSInt(bool on)
{
BB_COSLED = !!on;
}
void CIO::setDStarInt(bool on)
{
BB_DSTAR = !!on;
}
void CIO::setDMRInt(bool on)
{
BB_DMR = !!on;
}
void CIO::setYSFInt(bool on)
{
BB_YSF = !!on;
}
void CIO::setP25Int(bool on)
{
BB_P25 = !!on;
}
void CIO::setNXDNInt(bool on)
{
BB_NXDN = !!on;
}
void CIO::delayInt(unsigned int dly)
{
delay(dly);
}
#endif

View File

@ -1,5 +1,5 @@
/*
* Copyright (C) 2016 by Jonathan Naylor G4KLX
* Copyright (C) 2016,2017,2018 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -34,6 +34,11 @@
#define PIN_DMR 10
#define PIN_YSF 11
#define PIN_P25 12
#if defined(__MK20DX256__)
#define PIN_NXDN 2
#else
#define PIN_NXDN 24
#endif
#define PIN_ADC 5 // A0, Pin 14
#define PIN_RSSI 4 // Teensy 3.5/3.6, A16, Pin 35. Teensy 3.1/3.2, A17, Pin 28
@ -45,15 +50,8 @@ const uint16_t DC_OFFSET = 2048U;
extern "C" {
void adc0_isr()
{
io.interrupt(0U);
io.interrupt();
}
#if defined(SEND_RSSI_DATA)
void adc1_isr()
{
io.interrupt(1U);
}
#endif
}
void CIO::initInt()
@ -70,6 +68,7 @@ void CIO::initInt()
pinMode(PIN_DMR, OUTPUT);
pinMode(PIN_YSF, OUTPUT);
pinMode(PIN_P25, OUTPUT);
pinMode(PIN_NXDN, OUTPUT);
#endif
}
@ -116,7 +115,6 @@ void CIO::startInt()
ADC1_CLP2 + ADC1_CLP1 + ADC1_CLP0;
sum1 = (sum1 / 2U) | 0x8000U;
ADC1_PG = sum1;
#endif
#if defined(EXTERNAL_OSC)
@ -149,9 +147,8 @@ void CIO::startInt()
digitalWrite(PIN_LED, HIGH);
}
void CIO::interrupt(uint8_t source)
void CIO::interrupt()
{
if (source == 0U) { // ADC0
uint8_t control = MARK_NONE;
uint16_t sample = DC_OFFSET;
@ -164,27 +161,19 @@ void CIO::interrupt(uint8_t source)
}
#if defined(SEND_RSSI_DATA)
if ((ADC1_SC1A & ADC_SC1_COCO) == ADC_SC1_COCO) {
uint16_t rssi = ADC1_RA;
m_rssiBuffer.put(rssi);
}
else {
} else {
m_rssiBuffer.put(0U);
}
ADC1_SC1A = ADC_SC1_AIEN | PIN_RSSI; //start the next RSSI conversion
ADC1_SC1A = PIN_RSSI; // Start the next RSSI conversion
#else
m_rssiBuffer.put(0U);
#endif
m_watchdog++;
}
}
bool CIO::getCOSInt()
@ -227,4 +216,14 @@ void CIO::setP25Int(bool on)
digitalWrite(PIN_P25, on ? HIGH : LOW);
}
void CIO::setNXDNInt(bool on)
{
digitalWrite(PIN_NXDN, on ? HIGH : LOW);
}
void CIO::delayInt(unsigned int dly)
{
delay(dly);
}
#endif

View File

@ -1,5 +1,5 @@
/*
* Copyright (C) 2015,2016 by Jonathan Naylor G4KLX
* Copyright (C) 2015,2016,2017,2018 by Jonathan Naylor G4KLX
* Copyright (C) 2016 by Mathis Schmieder DB9MAT
* Copyright (C) 2016 by Colin Durbridge G4EML
*
@ -18,7 +18,7 @@
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#if defined(STM32F4XX) || defined(STM32F4)
#if defined(STM32F4XX) || defined(STM32F7XX) || defined(STM32F105xC)
#include "Config.h"
#include "Globals.h"
@ -30,15 +30,13 @@ bool m_dstarEnable = true;
bool m_dmrEnable = true;
bool m_ysfEnable = true;
bool m_p25Enable = true;
bool m_nxdnEnable = true;
bool m_duplex = true;
bool m_tx = false;
bool m_dcd = false;
uint32_t m_sampleCount = 0U;
bool m_sampleInsert = false;
CDStarRX dstarRX;
CDStarTX dstarTX;
@ -55,9 +53,15 @@ CYSFTX ysfTX;
CP25RX p25RX;
CP25TX p25TX;
CNXDNRX nxdnRX;
CNXDNTX nxdnTX;
CCalDStarRX calDStarRX;
CCalDStarTX calDStarTX;
CCalDMR calDMR;
CCalP25 calP25;
CCalNXDN calNXDN;
CCalRSSI calRSSI;
CCWIdTX cwIdTX;
@ -92,12 +96,21 @@ void loop()
if (m_p25Enable && m_modemState == STATE_P25)
p25TX.process();
if (m_nxdnEnable && m_modemState == STATE_NXDN)
nxdnTX.process();
if (m_modemState == STATE_DSTARCAL)
calDStarTX.process();
if (m_modemState == STATE_DMRCAL)
if (m_modemState == STATE_DMRCAL || m_modemState == STATE_LFCAL || m_modemState == STATE_DMRCAL1K || m_modemState == STATE_DMRDMO1K)
calDMR.process();
if (m_modemState == STATE_P25CAL1K)
calP25.process();
if (m_modemState == STATE_NXDNCAL1K)
calNXDN.process();
if (m_modemState == STATE_IDLE)
cwIdTX.process();
}
@ -111,4 +124,3 @@ int main()
}
#endif

View File

@ -1,5 +1,5 @@
/*
* Copyright (C) 2015,2016 by Jonathan Naylor G4KLX
* Copyright (C) 2015,2016,2017,2018 by Jonathan Naylor G4KLX
* Copyright (C) 2016 by Colin Durbridge G4EML
*
* This program is free software; you can redistribute it and/or modify
@ -27,15 +27,13 @@ bool m_dstarEnable = true;
bool m_dmrEnable = true;
bool m_ysfEnable = true;
bool m_p25Enable = true;
bool m_nxdnEnable = true;
bool m_duplex = true;
bool m_tx = false;
bool m_dcd = false;
uint32_t m_sampleCount = 0U;
bool m_sampleInsert = false;
CDStarRX dstarRX;
CDStarTX dstarTX;
@ -52,9 +50,15 @@ CYSFTX ysfTX;
CP25RX p25RX;
CP25TX p25TX;
CNXDNRX nxdnRX;
CNXDNTX nxdnTX;
CCalDStarRX calDStarRX;
CCalDStarTX calDStarTX;
CCalDMR calDMR;
CCalP25 calP25;
CCalNXDN calNXDN;
CCalRSSI calRSSI;
CCWIdTX cwIdTX;
@ -89,12 +93,21 @@ void loop()
if (m_p25Enable && m_modemState == STATE_P25)
p25TX.process();
if (m_nxdnEnable && m_modemState == STATE_NXDN)
nxdnTX.process();
if (m_modemState == STATE_DSTARCAL)
calDStarTX.process();
if (m_modemState == STATE_DMRCAL)
if (m_modemState == STATE_DMRCAL || m_modemState == STATE_LFCAL || m_modemState == STATE_DMRCAL1K || m_modemState == STATE_DMRDMO1K)
calDMR.process();
if (m_modemState == STATE_P25CAL1K)
calP25.process();
if (m_modemState == STATE_NXDNCAL1K)
calNXDN.process();
if (m_modemState == STATE_IDLE)
cwIdTX.process();
}

View File

@ -1,7 +1,7 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<Project version="2G - 1.7.8" name="MMDVM_STM32F4xx">
<Target name="MMDVM_Discovery_407" isCurrent="1">
<Device manufacturerId="9" manufacturerName="ST" chipId="344" chipName="STM32F407VG" boardId="" boardName=""/>
<Project version="2G - 2.0.5" name="MMDVM_STM32F4xx">
<Target name="MMDVM_Discovery_407" isCurrent="0">
<Device manufacturerId="9" manufacturerName="ST" chipId="261" chipName="STM32F407VG" boardId="" boardName="" boardUrl="" coreId="" coreName=""/>
<BuildOption>
<Compile>
<Option name="OptimizationLevel" value="4"/>
@ -9,6 +9,8 @@
<Option name="UserEditCompiler" value=""/>
<Option name="SupportCPlusplus" value="1"/>
<Option name="FPU" value="2"/>
<Option name="DEBUG" value="2"/>
<Option name="WARNING" value="1"/>
<Includepaths>
<Includepath path="."/>
</Includepaths>
@ -77,7 +79,7 @@
<ExcludeFile/>
</Target>
<Target name="MMDVM_Pi_446" isCurrent="0">
<Device manufacturerId="9" manufacturerName="ST" chipId="344" chipName="STM32F407VG" boardId="" boardName=""/>
<Device manufacturerId="9" manufacturerName="ST" chipId="344" chipName="STM32F407VG" boardId="" boardName="" boardUrl="" coreId="" coreName=""/>
<BuildOption>
<Compile>
<Option name="OptimizationLevel" value="4"/>
@ -98,8 +100,6 @@
<Define name="HSE_VALUE=12000000"/>
<Define name="STM32F4_PI"/>
<Define name="ARDUINO_MODE_PINS"/>
<Define name="SEND_RSSI_DATA"/>
<Define name="SERIAL_REPEATER"/>
</DefinedSymbols>
</Compile>
<Link useDefault="0">
@ -155,8 +155,8 @@
</DebugOption>
<ExcludeFile/>
</Target>
<Target name="MMDVM_Nucleo_446" isCurrent="0">
<Device manufacturerId="9" manufacturerName="ST" chipId="344" chipName="STM32F407VG" boardId="" boardName=""/>
<Target name="MMDVM_Nucleo_446" isCurrent="1">
<Device manufacturerId="9" manufacturerName="ST" chipId="261" chipName="STM32F407VG" boardId="" boardName="" boardUrl="" coreId="" coreName=""/>
<BuildOption>
<Compile>
<Option name="OptimizationLevel" value="4"/>
@ -164,6 +164,8 @@
<Option name="UserEditCompiler" value=""/>
<Option name="SupportCPlusplus" value="1"/>
<Option name="FPU" value="2"/>
<Option name="DEBUG" value="2"/>
<Option name="WARNING" value="0"/>
<Includepaths>
<Includepath path="."/>
</Includepaths>
@ -231,8 +233,8 @@
</DebugOption>
<ExcludeFile/>
</Target>
<Components path="./">
</Components>
<Components path="./"/>
<LocalComponents/>
<Files>
<File name="DMRIdleRX.h" path="DMRIdleRX.h" type="1"/>
<File name="STM32F4XX_Lib/STM32F4xx_StdPeriph_Driver/source/stm32f4xx_dac.c" path="STM32F4XX_Lib/STM32F4xx_StdPeriph_Driver/source/stm32f4xx_dac.c" type="1"/>
@ -242,34 +244,40 @@
<File name="STM32F4XX_Lib/Device/stm32f4xx.h" path="STM32F4XX_Lib/Device/stm32f4xx.h" type="1"/>
<File name="SampleRB.cpp" path="SampleRB.cpp" type="1"/>
<File name="CalDStarTX.h" path="CalDStarTX.h" type="1"/>
<File name="CalNXDN.cpp" path="CalNXDN.cpp" type="1"/>
<File name="NXDNTX.cpp" path="NXDNTX.cpp" type="1"/>
<File name="STM32F4XX_Lib/CMSIS/Include/core_cm4.h" path="STM32F4XX_Lib/CMSIS/Include/core_cm4.h" type="1"/>
<File name="DMRSlotRX.h" path="DMRSlotRX.h" type="1"/>
<File name="STM32F4XX_Lib/STM32F4xx_StdPeriph_Driver/source/stm32f4xx_tim.c" path="STM32F4XX_Lib/STM32F4xx_StdPeriph_Driver/source/stm32f4xx_tim.c" type="1"/>
<File name="YSFRX.h" path="YSFRX.h" type="1"/>
<File name="STM32F4XX_Lib/CMSIS/Include" path="" type="2"/>
<File name="IO.cpp" path="IO.cpp" type="1"/>
<File name="NXDNRX.cpp" path="NXDNRX.cpp" type="1"/>
<File name="DMRDMORX.cpp" path="DMRDMORX.cpp" type="1"/>
<File name="IO.cpp" path="IO.cpp" type="1"/>
<File name="P25RX.h" path="P25RX.h" type="1"/>
<File name="STM32F4XX_Lib/STM32F4xx_StdPeriph_Driver/source/misc.c" path="STM32F4XX_Lib/STM32F4xx_StdPeriph_Driver/source/misc.c" type="1"/>
<File name="STM32F4XX_Lib/CMSIS" path="" type="2"/>
<File name="SerialArduino.cpp" path="SerialArduino.cpp" type="1"/>
<File name="SerialPort.cpp" path="SerialPort.cpp" type="1"/>
<File name="CalP25.cpp" path="CalP25.cpp" type="1"/>
<File name="STM32F4XX_Lib/Device/stm32f4xx_conf.h" path="STM32F4XX_Lib/Device/stm32f4xx_conf.h" type="1"/>
<File name="STM32F4XX_Lib/STM32F4xx_StdPeriph_Driver/source/stm32f4xx_adc.c" path="STM32F4XX_Lib/STM32F4xx_StdPeriph_Driver/source/stm32f4xx_adc.c" type="1"/>
<File name="IOSTM_CMSIS.cpp" path="IOSTM_CMSIS.cpp" type="1"/>
<File name="DStarTX.cpp" path="DStarTX.cpp" type="1"/>
<File name="STM32F4XX_Lib/STM32F4xx_StdPeriph_Driver/source/stm32f4xx_usart.c" path="STM32F4XX_Lib/STM32F4xx_StdPeriph_Driver/source/stm32f4xx_usart.c" type="1"/>
<File name="SampleRB.h" path="SampleRB.h" type="1"/>
<File name="YSFTX.h" path="YSFTX.h" type="1"/>
<File name="SerialSTM_CMSIS.cpp" path="SerialSTM_CMSIS.cpp" type="1"/>
<File name="DMRRX.h" path="DMRRX.h" type="1"/>
<File name="IOTeensy.cpp" path="IOTeensy.cpp" type="1"/>
<File name="MMDVM.cpp" path="MMDVM.cpp" type="1"/>
<File name="IOTeensy.cpp" path="IOTeensy.cpp" type="1"/>
<File name="STM32F4XX_Lib/CMSIS/Include/core_cmSimd.h" path="STM32F4XX_Lib/CMSIS/Include/core_cmSimd.h" type="1"/>
<File name="DMRDMORX.h" path="DMRDMORX.h" type="1"/>
<File name="SerialPort.h" path="SerialPort.h" type="1"/>
<File name="STM32F4XX_Lib/STM32F4xx_StdPeriph_Driver/include/stm32f4xx_dac.h" path="STM32F4XX_Lib/STM32F4xx_StdPeriph_Driver/include/stm32f4xx_dac.h" type="1"/>
<File name="CWIdTX.h" path="CWIdTX.h" type="1"/>
<File name="STM32F4XX_Lib/Device/system_stm32f4xx.h" path="STM32F4XX_Lib/Device/system_stm32f4xx.h" type="1"/>
<File name="STM32F4XX_Lib/CMSIS/Include/core_cmFunc.h" path="STM32F4XX_Lib/CMSIS/Include/core_cmFunc.h" type="1"/>
<File name="STM32F4XX_Lib/Device/system_stm32f4xx.h" path="STM32F4XX_Lib/Device/system_stm32f4xx.h" type="1"/>
<File name="CWIdTX.h" path="CWIdTX.h" type="1"/>
<File name="CalDStarTX.cpp" path="CalDStarTX.cpp" type="1"/>
<File name="STM32F4XX_Lib/STM32F4xx_StdPeriph_Driver/source" path="" type="2"/>
<File name="CalDMR.h" path="CalDMR.h" type="1"/>
@ -277,16 +285,19 @@
<File name="IODue.cpp" path="IODue.cpp" type="1"/>
<File name="DMRTX.cpp" path="DMRTX.cpp" type="1"/>
<File name="P25RX.cpp" path="P25RX.cpp" type="1"/>
<File name="CalRSSI.h" path="CalRSSI.h" type="1"/>
<File name="STM32F4XX_Lib/CMSIS/Lib/GCC" path="" type="2"/>
<File name="STM32F4XX_Lib" path="" type="2"/>
<File name="STM32F4XX_Lib/CMSIS/Include/core_cmInstr.h" path="STM32F4XX_Lib/CMSIS/Include/core_cmInstr.h" type="1"/>
<File name="DMRTX.h" path="DMRTX.h" type="1"/>
<File name="STM32F4XX_Lib/Device/system_stm32f4xx.c" path="STM32F4XX_Lib/Device/system_stm32f4xx.c" type="1"/>
<File name="RSSIRB.h" path="RSSIRB.h" type="1"/>
<File name="STM32F4XX_Lib/Device/startup/startup_stm32f4xx.c" path="STM32F4XX_Lib/Device/startup/startup_stm32f4xx.c" type="1"/>
<File name="RSSIRB.h" path="RSSIRB.h" type="1"/>
<File name="STM32F4XX_Lib/Device/startup" path="" type="2"/>
<File name="SerialRB.h" path="SerialRB.h" type="1"/>
<File name="NXDNDefines.h" path="NXDNDefines.h" type="1"/>
<File name="STM32F4XX_Lib/STM32F4xx_StdPeriph_Driver/include/stm32f4xx_gpio.h" path="STM32F4XX_Lib/STM32F4xx_StdPeriph_Driver/include/stm32f4xx_gpio.h" type="1"/>
<File name="NXDNTX.h" path="NXDNTX.h" type="1"/>
<File name="STM32F4XX_Lib/STM32F4xx_StdPeriph_Driver" path="" type="2"/>
<File name="DMRDefines.h" path="DMRDefines.h" type="1"/>
<File name="CalDMR.cpp" path="CalDMR.cpp" type="1"/>
@ -295,18 +306,22 @@
<File name="STM32F4XX_Lib/CMSIS/Lib/GCC/libarm_cortexM4lf_math.a" path="STM32F4XX_Lib/CMSIS/Lib/GCC/libarm_cortexM4lf_math.a" type="1"/>
<File name="DStarDefines.h" path="DStarDefines.h" type="1"/>
<File name="DStarRX.h" path="DStarRX.h" type="1"/>
<File name="NXDNRX.h" path="NXDNRX.h" type="1"/>
<File name="Config.h" path="Config.h" type="1"/>
<File name="RingBuff.h" path="RingBuff.h" type="1"/>
<File name="DMRSlotType.cpp" path="DMRSlotType.cpp" type="1"/>
<File name="Globals.h" path="Globals.h" type="1"/>
<File name="STM32F4XX_Lib/Device" path="" type="2"/>
<File name="CalDStarRX.cpp" path="CalDStarRX.cpp" type="1"/>
<File name="STM32F4XX_Lib/STM32F4xx_StdPeriph_Driver/include/stm32f4xx_tim.h" path="STM32F4XX_Lib/STM32F4xx_StdPeriph_Driver/include/stm32f4xx_tim.h" type="1"/>
<File name="CalNXDN.h" path="CalNXDN.h" type="1"/>
<File name="CalDStarRX.h" path="CalDStarRX.h" type="1"/>
<File name="STM32F4XX_Lib/STM32F4xx_StdPeriph_Driver/include" path="" type="2"/>
<File name="CalRSSI.cpp" path="CalRSSI.cpp" type="1"/>
<File name="IO.h" path="IO.h" type="1"/>
<File name="Utils.cpp" path="Utils.cpp" type="1"/>
<File name="STM32F4XX_Lib/CMSIS/.DS_Store" path="STM32F4XX_Lib/CMSIS/.DS_Store" type="1"/>
<File name="STM32F4XX_Lib/CMSIS/Lib/.DS_Store" path="STM32F4XX_Lib/CMSIS/Lib/.DS_Store" type="1"/>
<File name="STM32F4XX_Lib/CMSIS/.DS_Store" path="STM32F4XX_Lib/CMSIS/.DS_Store" type="1"/>
<File name="Utils.h" path="Utils.h" type="1"/>
<File name="STM32F4XX_Lib/CMSIS/Lib" path="" type="2"/>
<File name="STM32F4XX_Lib/STM32F4xx_StdPeriph_Driver/.DS_Store" path="STM32F4XX_Lib/STM32F4xx_StdPeriph_Driver/.DS_Store" type="1"/>
@ -315,6 +330,7 @@
<File name="YSFDefines.h" path="YSFDefines.h" type="1"/>
<File name="DStarTX.h" path="DStarTX.h" type="1"/>
<File name="STM32F4XX_Lib/STM32F4xx_StdPeriph_Driver/source/stm32f4xx_rcc.c" path="STM32F4XX_Lib/STM32F4xx_StdPeriph_Driver/source/stm32f4xx_rcc.c" type="1"/>
<File name="CalP25.h" path="CalP25.h" type="1"/>
<File name="STM32F4XX_Lib/Device/.DS_Store" path="STM32F4XX_Lib/Device/.DS_Store" type="1"/>
<File name="STM32F4XX_Lib/STM32F4xx_StdPeriph_Driver/include/stm32f4xx_rcc.h" path="STM32F4XX_Lib/STM32F4xx_StdPeriph_Driver/include/stm32f4xx_rcc.h" type="1"/>
<File name="P25Defines.h" path="P25Defines.h" type="1"/>
@ -331,8 +347,10 @@
<File name="CWIdTX.cpp" path="CWIdTX.cpp" type="1"/>
<File name="DMRIdleRX.cpp" path="DMRIdleRX.cpp" type="1"/>
<File name="STM32F4XX_Lib/STM32F4xx_StdPeriph_Driver/include/stm32f4xx_usart.h" path="STM32F4XX_Lib/STM32F4xx_StdPeriph_Driver/include/stm32f4xx_usart.h" type="1"/>
<File name="STM32Utils.h" path="STM32Utils.h" type="1"/>
<File name="STM32F4XX_Lib/.DS_Store" path="STM32F4XX_Lib/.DS_Store" type="1"/>
<File name="YSFTX.cpp" path="YSFTX.cpp" type="1"/>
<File name="STM32F4XX_Lib/STM32F4xx_StdPeriph_Driver/source/stm32f4xx_gpio.c" path="STM32F4XX_Lib/STM32F4xx_StdPeriph_Driver/source/stm32f4xx_gpio.c" type="1"/>
</Files>
<Bookmarks/>
</Project>

356
Makefile
View File

@ -1,4 +1,4 @@
# Copyright (C) 2016 by Andy Uribe CA6JAU
# Copyright (C) 2016,2017,2018 by Andy Uribe CA6JAU
# Copyright (C) 2016 by Jim McLaughlin KI6ZUM
# This program is free software; you can redistribute it and/or modify
@ -15,6 +15,54 @@
# along with this program; if not, write to the Free Software
# Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
# MMDVM source files
MMDVM_PATH=.
# STM32 library paths
F4_LIB_PATH=./STM32F4XX_Lib
F7_LIB_PATH=./STM32F7XX_Lib
# MCU external clock frequency (Hz)
CLK_MMDVM_PI=12000000
CLK_NUCLEO=8000000
# Directory Structure
BINDIR=bin
OBJDIR_F4=obj_f4
OBJDIR_F7=obj_f7
# Output files
BINELF_F4=mmdvm_f4.elf
BINHEX_F4=mmdvm_f4.hex
BINBIN_F4=mmdvm_f4.bin
BINELF_F7=mmdvm_f7.elf
BINHEX_F7=mmdvm_f7.hex
BINBIN_F7=mmdvm_f7.bin
# Header directories
INC_F4= . $(F4_LIB_PATH)/CMSIS/Include/ $(F4_LIB_PATH)/Device/ $(F4_LIB_PATH)/STM32F4xx_StdPeriph_Driver/include/
INCLUDES_F4=$(INC_F4:%=-I%)
INC_F7= . $(F7_LIB_PATH)/CMSIS/Include/ $(F7_LIB_PATH)/Device/ $(F7_LIB_PATH)/STM32F7xx_StdPeriph_Driver/inc/
INCLUDES_F7=$(INC_F7:%=-I%)
# CMSIS libraries
INCLUDES_LIBS_F4=$(F4_LIB_PATH)/CMSIS/Lib/GCC/libarm_cortexM4lf_math.a
INCLUDES_LIBS_F7=$(F7_LIB_PATH)/CMSIS/Lib/GCC/libarm_cortexM7lfsp_math.a
# STM32F4 Standard Peripheral Libraries source path
STD_LIB_F4=$(F4_LIB_PATH)/STM32F4xx_StdPeriph_Driver/source
# STM32F7 Standard Peripheral Libraries source path
STD_LIB_F7=$(F7_LIB_PATH)/STM32F7xx_StdPeriph_Driver/src
# STM32F4 system source path
SYS_DIR_F4=$(F4_LIB_PATH)/Device
STARTUP_DIR_F4=$(F4_LIB_PATH)/Device/startup
# STM32F7 system source path
SYS_DIR_F7=$(F7_LIB_PATH)/Device
STARTUP_DIR_F7=$(F7_LIB_PATH)/Device/startup
# GNU ARM Embedded Toolchain
CC=arm-none-eabi-gcc
CXX=arm-none-eabi-g++
@ -27,147 +75,279 @@ NM=arm-none-eabi-nm
SIZE=arm-none-eabi-size
A2L=arm-none-eabi-addr2line
# Directory Structure
BINDIR=bin
# Find source files
# "SystemRoot" is only defined in Windows
ifdef SYSTEMROOT
ASOURCES=$(shell dir /S /B *.s)
CSOURCES=$(shell dir /S /B *.c)
CXXSOURCES=$(shell dir /S /B *.cpp)
CLEANCMD=del /S *.o *.hex *.bin *.elf
MDBIN=md $@
CLEANCMD=del /S *.o *.hex *.bin *.elf GitVersion.h
MDDIRS=md $@
else ifdef SystemRoot
ASOURCES=$(shell dir /S /B *.s)
CSOURCES=$(shell dir /S /B *.c)
CXXSOURCES=$(shell dir /S /B *.cpp)
CLEANCMD=del /S *.o *.hex *.bin *.elf
MDBIN=md $@
CLEANCMD=del /S *.o *.hex *.bin *.elf GitVersion.h
MDDIRS=md $@
else
ASOURCES=$(shell find . -name '*.s')
CSOURCES=$(shell find . -name '*.c')
CXXSOURCES=$(shell find . -name '*.cpp')
CLEANCMD=rm -f $(OBJECTS) $(BINDIR)/$(BINELF) $(BINDIR)/$(BINHEX) $(BINDIR)/$(BINBIN)
MDBIN=mkdir $@
CLEANCMD=rm -f $(OBJ_F4) $(OBJ_F7) $(BINDIR)/*.hex $(BINDIR)/*.bin $(BINDIR)/*.elf GitVersion.h
MDDIRS=mkdir $@
endif
# Default reference oscillator frequencies
ifndef $(OSC)
ifeq ($(MAKECMDGOALS),pi)
OSC=12000000
OSC=$(CLK_MMDVM_PI)
else ifeq ($(MAKECMDGOALS),pi-f722)
OSC=$(CLK_MMDVM_PI)
else
OSC=8000000
OSC=$(CLK_NUCLEO)
endif
endif
# Find header directories
INC= . STM32F4XX_Lib/CMSIS/Include/ STM32F4XX_Lib/Device/ STM32F4XX_Lib/STM32F4xx_StdPeriph_Driver/include/
INCLUDES=$(INC:%=-I%)
# Build object lists
CXXSRC=$(wildcard $(MMDVM_PATH)/*.cpp)
CSRC_STD_F4=$(wildcard $(STD_LIB_F4)/*.c)
SYS_F4=$(wildcard $(SYS_DIR_F4)/*.c)
STARTUP_F4=$(wildcard $(STARTUP_DIR_F4)/*.c)
CSRC_STD_F7=$(wildcard $(STD_LIB_F7)/*.c)
SYS_F7=$(wildcard $(SYS_DIR_F7)/*.c)
STARTUP_F7=$(wildcard $(STARTUP_DIR_F7)/*.c)
OBJ_F4=$(CXXSRC:$(MMDVM_PATH)/%.cpp=$(OBJDIR_F4)/%.o) $(CSRC_STD_F4:$(STD_LIB_F4)/%.c=$(OBJDIR_F4)/%.o) $(SYS_F4:$(SYS_DIR_F4)/%.c=$(OBJDIR_F4)/%.o) $(STARTUP_F4:$(STARTUP_DIR_F4)/%.c=$(OBJDIR_F4)/%.o)
OBJ_F7=$(CXXSRC:$(MMDVM_PATH)/%.cpp=$(OBJDIR_F7)/%.o) $(CSRC_STD_F7:$(STD_LIB_F7)/%.c=$(OBJDIR_F7)/%.o) $(SYS_F7:$(SYS_DIR_F7)/%.c=$(OBJDIR_F7)/%.o) $(STARTUP_F7:$(STARTUP_DIR_F7)/%.c=$(OBJDIR_F7)/%.o)
# Find libraries
INCLUDES_LIBS=STM32F4XX_Lib/CMSIS/Lib/GCC/libarm_cortexM4lf_math.a
LINK_LIBS=
# MCU flags
MCFLAGS_F4=-mcpu=cortex-m4 -mthumb -mlittle-endian -mfpu=fpv4-sp-d16 -mfloat-abi=hard -mthumb-interwork
MCFLAGS_F7=-mcpu=cortex-m7 -mthumb -mlittle-endian -mfpu=fpv5-sp-d16 -mfloat-abi=hard -mthumb-interwork
# Create object list
OBJECTS=$(ASOURCES:%.s=%.o)
OBJECTS+=$(CSOURCES:%.c=%.o)
OBJECTS+=$(CXXSOURCES:%.cpp=%.o)
# Define output files ELF & IHEX
BINELF=outp.elf
BINHEX=outp.hex
BINBIN=outp.bin
# MCU FLAGS
MCFLAGS=-mcpu=cortex-m4 -mthumb -mlittle-endian \
-mfpu=fpv4-sp-d16 -mfloat-abi=hard -mthumb-interwork
# COMPILE FLAGS
# Compile flags
# STM32F4 Discovery board:
DEFS_DIS=-DUSE_STDPERIPH_DRIVER -DSTM32F4XX -DSTM32F40_41xxx -DSTM32F4_DISCOVERY -DHSE_VALUE=$(OSC)
# Pi board:
DEFS_PI=-DUSE_STDPERIPH_DRIVER -DSTM32F4XX -DSTM32F446xx -DSTM32F4_PI -DARDUINO_MODE_PINS -DSEND_RSSI_DATA -DSERIAL_REPEATER -DHSE_VALUE=$(OSC)
# STM32F4 Nucleo 446 board:
DEFS_NUCLEO=-DUSE_STDPERIPH_DRIVER -DSTM32F4XX -DSTM32F446xx -DSTM32F4_NUCLEO -DHSE_VALUE=$(OSC)
DEFS_DIS=-DUSE_STDPERIPH_DRIVER -DSTM32F4XX -DSTM32F40_41xxx -DSTM32F4_DISCOVERY -DHSE_VALUE=$(OSC) -DMADEBYMAKEFILE
# MMDVM-Pi board:
DEFS_PI=-DUSE_STDPERIPH_DRIVER -DSTM32F4XX -DSTM32F446xx -DSTM32F4_PI -DHSE_VALUE=$(OSC) -DMADEBYMAKEFILE
# MMDVM-F4M F0DEI board:
DEFS_F4M=-DUSE_STDPERIPH_DRIVER -DSTM32F4XX -DSTM32F446xx -DSTM32F4_F4M -DHSE_VALUE=$(OSC) -DMADEBYMAKEFILE
# STM32F4 Nucleo-64 F446RE board:
DEFS_NUCLEO=-DUSE_STDPERIPH_DRIVER -DSTM32F4XX -DSTM32F446xx -DSTM32F4_NUCLEO -DHSE_VALUE=$(OSC) -DMADEBYMAKEFILE
# STM32F7 Nucleo-144 F767ZI board:
DEFS_NUCLEO_F767=-DUSE_HAL_DRIVER -DSTM32F767xx -DSTM32F7XX -DSTM32F7_NUCLEO -DHSE_VALUE=$(OSC) -DMADEBYMAKEFILE
# MMDVM-Pi F722 board:
DEFS_PI_F722=-DUSE_HAL_DRIVER -DSTM32F722xx -DSTM32F7XX -DSTM32F722_PI -DHSE_VALUE=$(OSC) -DMADEBYMAKEFILE
# MMDVM-F7M F0DEI board:
DEFS_F7M=-DUSE_HAL_DRIVER -DSTM32F722xx -DSTM32F7XX -DSTM32F722_F7M -DHSE_VALUE=$(OSC) -DMADEBYMAKEFILE
# STM32F4 DVM board:
DEFS_DVM=-DUSE_STDPERIPH_DRIVER -DSTM32F4XX -DSTM32F446xx -DSTM32F4_DVM -DHSE_VALUE=$(OSC) -DMADEBYMAKEFILE
CFLAGS=-c $(MCFLAGS) $(INCLUDES)
CXXFLAGS=-c $(MCFLAGS) $(INCLUDES)
# Build compiler flags
CFLAGS_F4=-c $(MCFLAGS_F4) $(INCLUDES_F4)
CXXFLAGS_F4=-c $(MCFLAGS_F4) $(INCLUDES_F4)
CFLAGS_F7=-c $(MCFLAGS_F7) $(INCLUDES_F7)
CXXFLAGS_F7=-c $(MCFLAGS_F7) $(INCLUDES_F7)
# LINKER FLAGS
LDSCRIPT=stm32f4xx_link.ld
LDFLAGS =-T $(LDSCRIPT) $(MCFLAGS) --specs=nosys.specs $(INCLUDES_LIBS) $(LINK_LIBS)
# Linker flags
LDFLAGS_F4 =-T stm32f4xx_link.ld $(MCFLAGS_F4) --specs=nosys.specs $(INCLUDES_LIBS_F4)
LDFLAGS_F767 =-T stm32f767_link.ld $(MCFLAGS_F7) --specs=nosys.specs $(INCLUDES_LIBS_F7)
LDFLAGS_F722 =-T stm32f722_link.ld $(MCFLAGS_F7) --specs=nosys.specs $(INCLUDES_LIBS_F7)
# Common flags
CFLAGS=-Os -ffunction-sections -fdata-sections -fno-builtin -Wno-implicit -DCUSTOM_NEW -DNO_EXCEPTIONS
CXXFLAGS=-Os -fno-exceptions -ffunction-sections -fdata-sections -fno-builtin -fno-rtti -DCUSTOM_NEW -DNO_EXCEPTIONS
LDFLAGS=-Os --specs=nano.specs
# Build Rules
.PHONY: all release dis pi nucleo debug clean
.PHONY: all release dis pi pi_f722 f4m nucleo f767 dvm clean
# Default target: STM32F4 Discovery board
all: dis
# Default target: Nucleo-64 F446RE board
all: nucleo
pi: CFLAGS+=$(DEFS_PI) -Os -ffunction-sections -fdata-sections -fno-builtin -Wno-implicit -DCUSTOM_NEW -DNO_EXCEPTIONS
pi: CXXFLAGS+=$(DEFS_PI) -Os -fno-exceptions -ffunction-sections -fdata-sections -fno-builtin -fno-rtti -DCUSTOM_NEW -DNO_EXCEPTIONS
pi: LDFLAGS+=-Os --specs=nano.specs
pi: release
pi: GitVersion.h
pi: CFLAGS+=$(CFLAGS_F4) $(DEFS_PI)
pi: CXXFLAGS+=$(CXXFLAGS_F4) $(DEFS_PI)
pi: LDFLAGS+=$(LDFLAGS_F4)
pi: release_f4
nucleo: CFLAGS+=$(DEFS_NUCLEO) -Os -ffunction-sections -fdata-sections -fno-builtin -Wno-implicit -DCUSTOM_NEW -DNO_EXCEPTIONS
nucleo: CXXFLAGS+=$(DEFS_NUCLEO) -Os -fno-exceptions -ffunction-sections -fdata-sections -fno-builtin -fno-rtti -DCUSTOM_NEW -DNO_EXCEPTIONS
nucleo: LDFLAGS+=-Os --specs=nano.specs
nucleo: release
pi-f722: GitVersion.h
pi-f722: CFLAGS+=$(CFLAGS_F7) $(DEFS_PI_F722)
pi-f722: CXXFLAGS+=$(CXXFLAGS_F7) $(DEFS_PI_F722)
pi-f722: LDFLAGS+=$(LDFLAGS_F722)
pi-f722: release_f7
dis: CFLAGS+=$(DEFS_DIS) -Os -ffunction-sections -fdata-sections -fno-builtin -Wno-implicit -DCUSTOM_NEW -DNO_EXCEPTIONS
dis: CXXFLAGS+=$(DEFS_DIS) -Os -fno-exceptions -ffunction-sections -fdata-sections -fno-builtin -fno-rtti -DCUSTOM_NEW -DNO_EXCEPTIONS
dis: LDFLAGS+=-Os --specs=nano.specs
dis: release
f4m: GitVersion.h
f4m: CFLAGS+=$(CFLAGS_F4) $(DEFS_F4M)
f4m: CXXFLAGS+=$(CXXFLAGS_F4) $(DEFS_F4M)
f4m: LDFLAGS+=$(LDFLAGS_F4)
f4m: release_f4
debug: CFLAGS+=-g
debug: CXXFLAGS+=-g
debug: LDFLAGS+=-g
debug: release
f7m: GitVersion.h
f7m: CFLAGS+=$(CFLAGS_F7) $(DEFS_F7M)
f7m: CXXFLAGS+=$(CXXFLAGS_F7) $(DEFS_F7M)
f7m: LDFLAGS+=$(LDFLAGS_F722)
f7m: release_f7
release: $(BINDIR)
release: $(BINDIR)/$(BINHEX)
release: $(BINDIR)/$(BINBIN)
nucleo: GitVersion.h
nucleo: CFLAGS+=$(CFLAGS_F4) $(DEFS_NUCLEO)
nucleo: CXXFLAGS+=$(CXXFLAGS_F4) $(DEFS_NUCLEO)
nucleo: LDFLAGS+=$(LDFLAGS_F4)
nucleo: release_f4
dis: GitVersion.h
dis: CFLAGS+=$(CFLAGS_F4) $(DEFS_DIS)
dis: CXXFLAGS+=$(CXXFLAGS_F4) $(DEFS_DIS)
dis: LDFLAGS+=$(LDFLAGS_F4)
dis: release_f4
f767: GitVersion.h
f767: CFLAGS+=$(CFLAGS_F7) $(DEFS_NUCLEO_F767)
f767: CXXFLAGS+=$(CXXFLAGS_F7) $(DEFS_NUCLEO_F767)
f767: LDFLAGS+=$(LDFLAGS_F767)
f767: release_f7
dvm: GitVersion.h
dvm: CFLAGS+=$(CFLAGS_F4) $(DEFS_DVM)
dvm: CXXFLAGS+=$(CXXFLAGS_F4) $(DEFS_DVM)
dvm: LDFLAGS+=$(LDFLAGS_F4)
dvm: release_f4
release_f4: $(BINDIR)
release_f4: $(OBJDIR_F4)
release_f4: $(BINDIR)/$(BINHEX_F4)
release_f4: $(BINDIR)/$(BINBIN_F4)
release_f7: $(BINDIR)
release_f7: $(OBJDIR_F7)
release_f7: $(BINDIR)/$(BINHEX_F7)
release_f7: $(BINDIR)/$(BINBIN_F7)
$(BINDIR):
$(MDBIN)
$(MDDIRS)
$(BINDIR)/$(BINHEX): $(BINDIR)/$(BINELF)
$(OBJDIR_F4):
$(MDDIRS)
$(OBJDIR_F7):
$(MDDIRS)
$(BINDIR)/$(BINHEX_F4): $(BINDIR)/$(BINELF_F4)
$(CP) -O ihex $< $@
@echo "Objcopy from ELF to IHEX complete!\n"
$(BINDIR)/$(BINBIN): $(BINDIR)/$(BINELF)
$(BINDIR)/$(BINBIN_F4): $(BINDIR)/$(BINELF_F4)
$(CP) -O binary $< $@
@echo "Objcopy from ELF to BINARY complete!\n"
$(BINDIR)/$(BINELF): $(OBJECTS)
$(CXX) $(OBJECTS) $(LDFLAGS) -o $@
$(BINDIR)/$(BINELF_F4): $(OBJ_F4)
$(CXX) $(OBJ_F4) $(LDFLAGS) -o $@
@echo "Linking complete!\n"
$(SIZE) $(BINDIR)/$(BINELF)
$(SIZE) $(BINDIR)/$(BINELF_F4)
%.o: %.cpp
$(BINDIR)/$(BINHEX_F7): $(BINDIR)/$(BINELF_F7)
$(CP) -O ihex $< $@
@echo "Objcopy from ELF to IHEX complete!\n"
$(BINDIR)/$(BINBIN_F7): $(BINDIR)/$(BINELF_F7)
$(CP) -O binary $< $@
@echo "Objcopy from ELF to BINARY complete!\n"
$(BINDIR)/$(BINELF_F7): $(OBJ_F7)
$(CXX) $(OBJ_F7) $(LDFLAGS) -o $@
@echo "Linking complete!\n"
$(SIZE) $(BINDIR)/$(BINELF_F7)
$(OBJDIR_F4)/%.o: $(MMDVM_PATH)/%.cpp
$(CXX) $(CXXFLAGS) $< -o $@
@echo "Compiled "$<"!\n"
%.o: %.c
$(OBJDIR_F7)/%.o: $(MMDVM_PATH)/%.cpp
$(CXX) $(CXXFLAGS) $< -o $@
@echo "Compiled "$<"!\n"
$(OBJDIR_F4)/%.o: $(STD_LIB_F4)/%.c
$(CC) $(CFLAGS) $< -o $@
@echo "Compiled "$<"!\n"
%.o: %.s
$(OBJDIR_F7)/%.o: $(STD_LIB_F7)/%.c
$(CC) $(CFLAGS) $< -o $@
@echo "Assambled "$<"!\n"
@echo "Compiled "$<"!\n"
$(OBJDIR_F4)/%.o: $(SYS_DIR_F4)/%.c
$(CC) $(CFLAGS) $< -o $@
@echo "Compiled "$<"!\n"
$(OBJDIR_F4)/%.o: $(STARTUP_DIR_F4)/%.c
$(CC) $(CFLAGS) $< -o $@
@echo "Compiled "$<"!\n"
$(OBJDIR_F7)/%.o: $(SYS_DIR_F7)/%.c
$(CC) $(CFLAGS) $< -o $@
@echo "Compiled "$<"!\n"
$(OBJDIR_F7)/%.o: $(STARTUP_DIR_F7)/%.c
$(CC) $(CFLAGS) $< -o $@
@echo "Compiled "$<"!\n"
clean:
$(CLEANCMD)
deploy:
ifneq ($(wildcard /usr/bin/openocd),)
/usr/bin/openocd -f /usr/share/openocd/scripts/board/stm32f4discovery.cfg -c "program bin/$(BINELF) verify reset exit"
/usr/bin/openocd -f /usr/share/openocd/scripts/interface/stlink-v2-1.cfg -f /usr/share/openocd/scripts/target/stm32f4x.cfg -c "program bin/$(BINELF_F4) verify reset exit"
endif
ifneq ($(wildcard /usr/local/bin/openocd),)
/usr/local/bin/openocd -f /usr/local/share/openocd/scripts/board/stm32f4discovery.cfg -c "program bin/$(BINELF) verify reset exit"
/usr/local/bin/openocd -f /usr/local/share/openocd/scripts/interface/stlink-v2-1.cfg -f /usr/local/share/openocd/scripts/target/stm32f4x.cfg -c "program bin/$(BINELF_F4) verify reset exit"
endif
ifneq ($(wildcard /opt/openocd/bin/openocd),)
/opt/openocd/bin/openocd -f /opt/openocd/share/openocd/scripts/board/stm32f4discovery.cfg -c "program bin/$(BINELF) verify reset exit"
/opt/openocd/bin/openocd -f /opt/openocd/share/openocd/scripts/interface/stlink-v2-1.cfg -f /opt/openocd/share/openocd/scripts/target/stm32f4x.cfg -c "program bin/$(BINELF_F4) verify reset exit"
endif
deploy-f7:
ifneq ($(wildcard /usr/bin/openocd),)
/usr/bin/openocd -f /usr/share/openocd/scripts/interface/stlink-v2-1.cfg -f /usr/share/openocd/scripts/target/stm32f7x.cfg -c "program bin/$(BINELF_F7) verify reset exit"
endif
ifneq ($(wildcard /usr/local/bin/openocd),)
/usr/local/bin/openocd -f /usr/local/share/openocd/scripts/interface/stlink-v2-1.cfg -f /usr/local/share/openocd/scripts/target/stm32f7x.cfg -c "program bin/$(BINELF_F7) verify reset exit"
endif
ifneq ($(wildcard /opt/openocd/bin/openocd),)
/opt/openocd/bin/openocd -f /opt/openocd/share/openocd/scripts/interface/stlink-v2-1.cfg -f /opt/openocd/share/openocd/scripts/target/stm32f7x.cfg -c "program bin/$(BINELF_F7) verify reset exit"
endif
deploy-pi:
ifneq ($(wildcard /usr/local/bin/stm32flash),)
-/usr/local/bin/stm32flash -i 20,-21,21:-20,21 /dev/ttyAMA0
-/usr/local/bin/stm32ld /dev/ttyAMA0 57600 bin/$(BINBIN_F4)
/usr/local/bin/stm32flash -v -w bin/$(BINBIN_F4) -g 0x0 -R -c /dev/ttyAMA0
endif
ifneq ($(wildcard /usr/bin/stm32flash),)
-/usr/bin/stm32flash -i 20,-21,21:-20,21 /dev/ttyAMA0
-/usr/bin/stm32ld /dev/ttyAMA0 57600 bin/$(BINBIN_F4)
/usr/bin/stm32flash -v -w bin/$(BINBIN_F4) -g 0x0 -R -c /dev/ttyAMA0
endif
deploy-f4m: deploy-pi
deploy-dvm: deploy-pi
deploy-pi-f7:
ifneq ($(wildcard /usr/local/bin/stm32flash),)
-/usr/local/bin/stm32flash -i 20,-21,21:-20,21 /dev/ttyAMA0
-/usr/local/bin/stm32ld /dev/ttyAMA0 57600 bin/$(BINBIN_F7)
/usr/local/bin/stm32flash -v -w bin/$(BINBIN_F7) -g 0x0 -R -c /dev/ttyAMA0
endif
ifneq ($(wildcard /usr/bin/stm32flash),)
-/usr/bin/stm32flash -i 20,-21,21:-20,21 /dev/ttyAMA0
-/usr/bin/stm32ld /dev/ttyAMA0 57600 bin/$(BINBIN_F7)
/usr/bin/stm32flash -v -w bin/$(BINBIN_F7) -g 0x0 -R -c /dev/ttyAMA0
endif
deploy-f7m: deploy-pi-f7
# Export the current git version if the index file exists, else 000...
GitVersion.h:
ifdef SYSTEMROOT
echo #define GITVERSION "0000000" > $@
else ifdef SystemRoot
echo #define GITVERSION "0000000" > $@
else
ifneq ("$(wildcard .git/index)","")
echo "#define GITVERSION \"$(shell git rev-parse --short HEAD)\"" > $@
else
echo "#define GITVERSION \"0000000\"" > $@
endif
endif

189
Makefile.Arduino Normal file
View File

@ -0,0 +1,189 @@
#!/usr/bin/make
# makefile for the arduino due (works with arduino IDE 1.6.11)
#
# The original file can be found at https://github.com/pauldreik/arduino-due-makefile
#
# USAGE: put this file in the same dir as your .ino file is.
# configure the PORT variable and ADIR at the top of the file
# to match your local configuration.
# Type make upload to compile and upload.
#
#user specific settings:
#where to find the IDE
ADIR:=$(HOME)/.arduino15
#which serial port to use (add a file with SUBSYSTEMS=="usb",
#ATTRS{product}=="Arduino Due Prog. Port", ATTRS{idProduct}=="003d",
#ATTRS{idVendor}=="2341", SYMLINK+="arduino_due" in /etc/udev/rules.d/
#to get this working). Do not prefix the port with /dev/, just take
#the basename.
PORT:=ttyACM0
#if you want to verify the bossac upload, define this to -v
VERIFY:=-v
#end of user configuration.
#then some general settings. They should not be necessary to modify.
#CXX:=$(ADIR)/tools/g++_arm_none_eabi/bin/arm-none-eabi-g++
CXX:=$(ADIR)/packages/arduino/tools/arm-none-eabi-gcc/4.8.3-2014q1/bin/arm-none-eabi-g++
#CC:=$(ADIR)/tools/g++_arm_none_eabi/bin/arm-none-eabi-gcc
CC:=$(ADIR)/packages/arduino/tools/arm-none-eabi-gcc/4.8.3-2014q1/bin/arm-none-eabi-gcc
OBJCOPY:=$(ADIR)/packages/arduino/tools/arm-none-eabi-gcc/4.8.3-2014q1/bin/arm-none-eabi-objcopy
C:=$(CC)
#SAM:=arduino/sam/
SAM:=$(ADIR)/packages/arduino/hardware/sam/1.6.11
#CMSIS:=arduino/sam/system/CMSIS/
#LIBSAM:=arduino/sam/system/libsam
TMPDIR:=$(PWD)/build
AR:=$(ADIR)/tools/g++_arm_none_eabi/bin/arm-none-eabi-ar
AR:=$(ADIR)/packages/arduino/tools/arm-none-eabi-gcc/4.8.3-2014q1/bin/arm-none-eabi-ar
#all these values are hard coded and should maybe be configured somehow else,
#like olikraus does in his makefile.
DEFINES:=-Dprintf=iprintf -DF_CPU=84000000 -DARDUINO=10611 -D__SAM3X8E__ -DUSB_PID=0x003e -DUSB_VID=0x2341 -DUSBCON \
-DARDUINO_SAM_DUE -DARDUINO_ARCH_SAM '-DUSB_MANUFACTURER="Arduino LLC"' '-DUSB_PRODUCT="Arduino Due"' \
-DMADEBYMAKEFILE
INCLUDES:=-I$(SAM)/system/libsam -I$(SAM)/system/CMSIS/CMSIS/Include/ \
-I$(SAM)/system/CMSIS/Device/ATMEL/ -I$(SAM)/cores/arduino \
-I$(SAM)/variants/arduino_due_x
#also include the current dir for convenience
INCLUDES += -I.
#compilation flags common to both c and c++
COMMON_FLAGS:=-g -Os -w -ffunction-sections -fdata-sections -nostdlib \
--param max-inline-insns-single=500 -mcpu=cortex-m3 -mthumb \
-fno-threadsafe-statics
#for compiling c (do not warn, this is not our code)
CFLAGS:=$(COMMON_FLAGS) -std=gnu11
#for compiling c++
CXXFLAGS:=$(COMMON_FLAGS) -fno-rtti -fno-exceptions -std=gnu++11 -Wall -Wextra
#let the results be named after the project
PROJNAME:=$(shell basename *.ino .ino)
#we will make a new mainfile from the ino file.
NEWMAINFILE:=$(TMPDIR)/$(PROJNAME).ino.cpp
#our own sourcefiles is the (converted) ino file and any local cpp files
MYSRCFILES:=$(NEWMAINFILE) $(shell ls *.cpp 2>/dev/null)
MYOBJFILES:=$(addsuffix .o,$(addprefix $(TMPDIR)/,$(notdir $(MYSRCFILES))))
#These source files are the ones forming core.a
CORESRCXX:=$(shell ls ${SAM}/cores/arduino/*.cpp ${SAM}/cores/arduino/USB/*.cpp ${SAM}/variants/arduino_due_x/variant.cpp)
CORESRC:=$(shell ls ${SAM}/cores/arduino/*.c)
#hey this one is needed too: $(SAM)/cores/arduino/wiring_pulse_asm.S" add -x assembler-with-cpp
#and this one: /1.6.11/cores/arduino/avr/dtostrf.c but it seems to work
#anyway, probably because I do not use that functionality.
#convert the core source files to object files. assume no clashes.
COREOBJSXX:=$(addprefix $(TMPDIR)/core/,$(notdir $(CORESRCXX)) )
COREOBJSXX:=$(addsuffix .o,$(COREOBJSXX))
COREOBJS:=$(addprefix $(TMPDIR)/core/,$(notdir $(CORESRC)) )
COREOBJS:=$(addsuffix .o,$(COREOBJS))
default:
@echo default rule, does nothing. Try make compile or make upload.
#This rule is good to just make sure stuff compiles, without having to wait
#for bossac.
compile: GitVersion.h $(TMPDIR)/$(PROJNAME).elf $(TMPDIR)/$(PROJNAME).bin
#This is a make rule template to create object files from the source files.
# arg 1=src file
# arg 2=object file
# arg 3= XX if c++, empty if c
define OBJ_template
$(2): $(1)
$(C$(3)) -MD -c $(C$(3)FLAGS) $(DEFINES) $(INCLUDES) $(1) -o $(2)
endef
#now invoke the template both for c++ sources
$(foreach src,$(CORESRCXX), $(eval $(call OBJ_template,$(src),$(addsuffix .o,$(addprefix $(TMPDIR)/core/,$(notdir $(src)))),XX) ) )
#...and for c sources:
$(foreach src,$(CORESRC), $(eval $(call OBJ_template,$(src),$(addsuffix .o,$(addprefix $(TMPDIR)/core/,$(notdir $(src)))),) ) )
#and our own c++ sources
$(foreach src,$(MYSRCFILES), $(eval $(call OBJ_template,$(src),$(addsuffix .o,$(addprefix $(TMPDIR)/,$(notdir $(src)))),XX) ) )
clean:
test ! -d $(TMPDIR) || rm -rf $(TMPDIR)
$(RM) GitVersion.h
.PHONY: .FORCE upload default
$(TMPDIR):
mkdir -p $(TMPDIR)
$(TMPDIR)/core:
mkdir -p $(TMPDIR)/core
#creates the cpp file from the .ino file
$(NEWMAINFILE): $(PROJNAME).ino
cat $(SAM)/cores/arduino/main.cpp > $(NEWMAINFILE)
cat $(PROJNAME).ino >> $(NEWMAINFILE)
echo 'extern "C" void __cxa_pure_virtual() {while (true);}' >> $(NEWMAINFILE)
#include the dependencies for our own files
-include $(MYOBJFILES:.o=.d)
#create the core library from the core objects. Do this EXACTLY as the
#arduino IDE does it, seems *really* picky about this.
#Sorry for the hard coding.
$(TMPDIR)/core.a: $(TMPDIR)/core $(COREOBJS) $(COREOBJSXX)
$(AR) rcs $(TMPDIR)/core.a $(TMPDIR)/core/wiring_shift.c.o
$(AR) rcs $(TMPDIR)/core.a $(TMPDIR)/core/wiring_analog.c.o
$(AR) rcs $(TMPDIR)/core.a $(TMPDIR)/core/itoa.c.o
$(AR) rcs $(TMPDIR)/core.a $(TMPDIR)/core/cortex_handlers.c.o
$(AR) rcs $(TMPDIR)/core.a $(TMPDIR)/core/hooks.c.o
$(AR) rcs $(TMPDIR)/core.a $(TMPDIR)/core/wiring.c.o
$(AR) rcs $(TMPDIR)/core.a $(TMPDIR)/core/WInterrupts.c.o
$(AR) rcs $(TMPDIR)/core.a $(TMPDIR)/core/syscalls_sam3.c.o
$(AR) rcs $(TMPDIR)/core.a $(TMPDIR)/core/iar_calls_sam3.c.o
$(AR) rcs $(TMPDIR)/core.a $(TMPDIR)/core/wiring_digital.c.o
$(AR) rcs $(TMPDIR)/core.a $(TMPDIR)/core/Print.cpp.o
$(AR) rcs $(TMPDIR)/core.a $(TMPDIR)/core/USARTClass.cpp.o
$(AR) rcs $(TMPDIR)/core.a $(TMPDIR)/core/WString.cpp.o
$(AR) rcs $(TMPDIR)/core.a $(TMPDIR)/core/PluggableUSB.cpp.o
$(AR) rcs $(TMPDIR)/core.a $(TMPDIR)/core/USBCore.cpp.o
$(AR) rcs $(TMPDIR)/core.a $(TMPDIR)/core/CDC.cpp.o
$(AR) rcs $(TMPDIR)/core.a $(TMPDIR)/core/wiring_pulse.cpp.o
$(AR) rcs $(TMPDIR)/core.a $(TMPDIR)/core/UARTClass.cpp.o
$(AR) rcs $(TMPDIR)/core.a $(TMPDIR)/core/main.cpp.o
$(AR) rcs $(TMPDIR)/core.a $(TMPDIR)/core/new.cpp.o
$(AR) rcs $(TMPDIR)/core.a $(TMPDIR)/core/watchdog.cpp.o
$(AR) rcs $(TMPDIR)/core.a $(TMPDIR)/core/Stream.cpp.o
$(AR) rcs $(TMPDIR)/core.a $(TMPDIR)/core/RingBuffer.cpp.o
$(AR) rcs $(TMPDIR)/core.a $(TMPDIR)/core/IPAddress.cpp.o
$(AR) rcs $(TMPDIR)/core.a $(TMPDIR)/core/Reset.cpp.o
$(AR) rcs $(TMPDIR)/core.a $(TMPDIR)/core/WMath.cpp.o
$(AR) rcs $(TMPDIR)/core.a $(TMPDIR)/core/variant.cpp.o
#link our own object files with core to form the elf file
$(TMPDIR)/$(PROJNAME).elf: $(TMPDIR)/core.a $(TMPDIR)/core/syscalls_sam3.c.o $(MYOBJFILES)
$(CC) -mcpu=cortex-m3 -mthumb -Os -Wl,--gc-sections -T$(SAM)/variants/arduino_due_x/linker_scripts/gcc/flash.ld -Wl,-Map,$(NEWMAINFILE).map -o $@ -L$(TMPDIR) -Wl,--cref -Wl,--check-sections -Wl,--gc-sections -Wl,--entry=Reset_Handler -Wl,--unresolved-symbols=report-all -Wl,--warn-common -Wl,--warn-section-align -Wl,--start-group -u _sbrk -u link -u _close -u _fstat -u _isatty -u _lseek -u _read -u _write -u _exit -u kill -u _getpid $(MYOBJFILES) $(TMPDIR)/core/variant.cpp.o $(SAM)/variants/arduino_due_x/libsam_sam3x8e_gcc_rel.a $(SAM)/system/CMSIS/CMSIS/Lib/GCC/libarm_cortexM3l_math.a $(TMPDIR)/core.a -Wl,--end-group -lm -gcc
#copy from the hex to our bin file (why?)
$(TMPDIR)/$(PROJNAME).bin: $(TMPDIR)/$(PROJNAME).elf
$(OBJCOPY) -O binary $< $@
#upload to the arduino by first resetting it (stty) and the running bossac
upload: compile
stty -F /dev/$(PORT) cs8 1200 hupcl
$(ADIR)/packages/arduino/tools/bossac/1.6.1-arduino/bossac -i --port=$(PORT) -U false -e -w $(VERIFY) -b $(TMPDIR)/$(PROJNAME).bin -R
# Export the current git version if the index file exists, else 000...
GitVersion.h: .FORCE
ifneq ("$(wildcard .git/index)","")
echo "#define GITVERSION \"$(shell git rev-parse --short HEAD)\"" > $@
else
echo "#define GITVERSION \"0000000\"" > $@
endif
.FORCE:

151
Makefile.CMSIS Normal file
View File

@ -0,0 +1,151 @@
# The name for the project
TARGET:=mmdvm
# The CPU architecture (will be used for -mcpu)
MCPU:=cortex-m3
MCU:=STM32F105xC
# The source files of the project
CSRC:=
CXXSRC:=$(wildcard *.cpp)
# Include directory for the system include files and system source file
SYSDIR:=system_stm32f1xx
SYSSRC:=$(SYSDIR)/system_stm32f1xx.c
# Other include directories
INCDIR:=
# Definitions
CDEFS:=
CXXDEFS:=
# The name of the startup file which matches to the architecture (MCPU)
STARTUP:=$(SYSDIR)/startup_stm32f105xc.S
STARTUP_DEFS=
# Include directory for CMSIS
CMSISDIR:=/opt/STM32Cube_FW_F1_V1.4.0/Drivers/CMSIS
# Libraries
LIBDIR:=
LIBS:=-larm_cortexM3l_math
# Name of the linker script
LDSCRIPT:=$(SYSDIR)/gcc.ld
# Target objects and binaries directory
OBJDIR:=obj
BINDIR:=bin
# Port definition for programming via bootloader (using stm32flash)
BL_PORT:=ttyUSB0
# Internal Variables
ELF:=$(BINDIR)/$(TARGET).elf
HEX:=$(BINDIR)/$(TARGET).hex
DIS:=$(BINDIR)/$(TARGET).dis
MAP:=$(BINDIR)/$(TARGET).map
OBJ:=$(CSRC:%.c=$(OBJDIR)/%.o) $(CXXSRC:%.cpp=$(OBJDIR)/%.o)
OBJ+=$(SYSSRC:$(SYSDIR)/%.c=$(OBJDIR)/%.o) $(STARTUP:$(SYSDIR)/%.S=$(OBJDIR)/%.o)
# Replace standard build tools by arm tools
CC:=arm-none-eabi-gcc
CXX:=arm-none-eabi-g++
AS:=arm-none-eabi-gcc
LD:=arm-none-eabi-g++
OBJCOPY:=arm-none-eabi-objcopy
OBJDUMP:=arm-none-eabi-objdump
SIZE:=arm-none-eabi-size
# Common flags
COMMON_FLAGS =-mthumb -mlittle-endian -mcpu=$(MCPU)
COMMON_FLAGS+= -Wall
COMMON_FLAGS+= -I. -I$(CMSISDIR)/Include -I$(CMSISDIR)/Device/ST/STM32F1xx/Include -I$(SYSDIR)
COMMON_FLAGS+= $(addprefix -I,$(INCDIR))
COMMON_FLAGS+= -D$(MCU)
COMMON_FLAGS+= -Os -flto -ffunction-sections -fdata-sections
COMMON_FLAGS+= -g
# Assembler flags
ASFLAGS:=$(COMMON_FLAGS)
# C flags
CFLAGS:=$(COMMON_FLAGS) $(addprefix -D,$(CDEFS))
CFLAGS+= -std=gnu11 -nostdlib
# CXX flags
CXXFLAGS:=$(COMMON_FLAGS) $(addprefix -D,$(CXXDEFS))
CXXFLAGS+= -nostdlib -fno-exceptions -fno-rtti
# LD flags
LDFLAGS:=$(COMMON_FLAGS) -Wl,--gc-sections -Wl,-Map=$(MAP) -Wl,--no-wchar-size-warning
LDFLAGS+= --specs=nosys.specs --specs=nano.specs
LDFLAGS+= -L$(CMSISDIR)/Lib/GCC/ $(addprefix -L,$(LIBDIR))
LDLIBS:=-T$(LDSCRIPT) $(LIBS)
# Dependecies
DEPENDS:=$(CSRC:%.c=$(OBJDIR)/%.d) $(CXXSRC:%.cpp=$(OBJDIR)/%.d)
# Additional Suffixes
.SUFFIXES: .elf .hex
# Targets
.PHONY: all
all: $(DIS) $(HEX)
$(SIZE) $(ELF)
.PHONY: program
program: $(HEX) $(ELF)
openocd -f openocd.cfg \
-c "program $(HEX) verify reset exit"
$(SIZE) $(ELF)
.PHONY: program_bl
program_bl: $(HEX) $(ELF)
stm32flash -w $(HEX) -v /dev/$(BL_PORT)
$(SIZE) $(ELF)
.PHONY: run
run: $(HEX) $(ELF)
openocd -f openocd.cfg \
-c "init" -c "reset" -c "exit"
.PHONY: debug
debug: $(ELF)
./debug.sh $(ELF)
.PHONY: clean
clean:
$(RM) $(OBJ) $(HEX) $(ELF) $(DIS) $(MAP) $(DEPENDS)
# implicit rules
.elf.hex:
$(OBJCOPY) -O ihex $< $@
$(OBJDIR)/%.o: %.c
$(CC) -MMD $(CFLAGS) -c $< -o $@
$(OBJDIR)/%.o: %.cpp
$(CXX) -MMD $(CXXFLAGS) -c $< -o $@
$(OBJDIR)/%.o: $(SYSDIR)/%.c
$(CC) $(CFLAGS) -c $< -o $@
$(OBJDIR)/%.o: $(SYSDIR)/%.S
$(AS) $(ASFLAGS) -c $< -o $@
# explicit rules
$(OBJDIR):
mkdir -p $(OBJDIR)
$(BINDIR):
mkdir -p $(BINDIR)
$(ELF): $(OBJDIR) $(BINDIR) $(OBJ)
$(LD) $(OBJ) $(LDFLAGS) $(LDLIBS) -o $@
$(DIS): $(ELF)
$(OBJDUMP) -S $< > $@
# include dependecies
-include $(DEPENDS)

50
NXDNDefines.h Normal file
View File

@ -0,0 +1,50 @@
/*
* Copyright (C) 2016,2017,2018 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#if !defined(NXDNDEFINES_H)
#define NXDNDEFINES_H
const unsigned int NXDN_RADIO_SYMBOL_LENGTH = 20U; // At 48 kHz sample rate
const unsigned int NXDN_FRAME_LENGTH_BITS = 384U;
const unsigned int NXDN_FRAME_LENGTH_BYTES = NXDN_FRAME_LENGTH_BITS / 8U;
const unsigned int NXDN_FRAME_LENGTH_SYMBOLS = NXDN_FRAME_LENGTH_BITS / 2U;
const unsigned int NXDN_FRAME_LENGTH_SAMPLES = NXDN_FRAME_LENGTH_SYMBOLS * NXDN_RADIO_SYMBOL_LENGTH;
const unsigned int NXDN_FSW_LENGTH_BITS = 20U;
const unsigned int NXDN_FSW_LENGTH_SYMBOLS = NXDN_FSW_LENGTH_BITS / 2U;
const unsigned int NXDN_FSW_LENGTH_SAMPLES = NXDN_FSW_LENGTH_SYMBOLS * NXDN_RADIO_SYMBOL_LENGTH;
const uint8_t NXDN_FSW_BYTES[] = {0xCDU, 0xF5U, 0x90U};
const uint8_t NXDN_FSW_BYTES_MASK[] = {0xFFU, 0xFFU, 0xF0U};
const uint8_t NXDN_FSW_BYTES_LENGTH = 3U;
const uint32_t NXDN_FSW_BITS = 0x000CDF59U;
const uint32_t NXDN_FSW_BITS_MASK = 0x000FFFFFU;
// C D F 5 9
// 11 00 11 01 11 11 01 01 10 01
// -3 +1 -3 +3 -3 -3 +3 +3 -1 +3
const int8_t NXDN_FSW_SYMBOLS_VALUES[] = {-3, +1, -3, +3, -3, -3, +3, +3, -1, +3};
const uint16_t NXDN_FSW_SYMBOLS = 0x014DU;
const uint16_t NXDN_FSW_SYMBOLS_MASK = 0x03FFU;
#endif

405
NXDNRX.cpp Normal file
View File

@ -0,0 +1,405 @@
/*
* Copyright (C) 2009-2018 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "Config.h"
#include "Globals.h"
#include "NXDNRX.h"
#include "Utils.h"
const q15_t SCALING_FACTOR = 18750; // Q15(0.55)
const uint8_t MAX_FSW_BIT_START_ERRS = 1U;
const uint8_t MAX_FSW_BIT_RUN_ERRS = 3U;
const uint8_t MAX_FSW_SYMBOLS_ERRS = 2U;
const uint8_t BIT_MASK_TABLE[] = {0x80U, 0x40U, 0x20U, 0x10U, 0x08U, 0x04U, 0x02U, 0x01U};
#define WRITE_BIT1(p,i,b) p[(i)>>3] = (b) ? (p[(i)>>3] | BIT_MASK_TABLE[(i)&7]) : (p[(i)>>3] & ~BIT_MASK_TABLE[(i)&7])
const uint8_t NOAVEPTR = 99U;
const uint16_t NOENDPTR = 9999U;
const unsigned int MAX_FSW_FRAMES = 5U + 1U;
CNXDNRX::CNXDNRX() :
m_state(NXDNRXS_NONE),
m_bitBuffer(),
m_buffer(),
m_bitPtr(0U),
m_dataPtr(0U),
m_startPtr(NOENDPTR),
m_endPtr(NOENDPTR),
m_fswPtr(NOENDPTR),
m_minFSWPtr(NOENDPTR),
m_maxFSWPtr(NOENDPTR),
m_maxCorr(0),
m_lostCount(0U),
m_countdown(0U),
m_centre(),
m_centreVal(0),
m_threshold(),
m_thresholdVal(0),
m_averagePtr(NOAVEPTR),
m_rssiAccum(0U),
m_rssiCount(0U)
{
}
void CNXDNRX::reset()
{
m_state = NXDNRXS_NONE;
m_dataPtr = 0U;
m_bitPtr = 0U;
m_maxCorr = 0;
m_averagePtr = NOAVEPTR;
m_startPtr = NOENDPTR;
m_endPtr = NOENDPTR;
m_fswPtr = NOENDPTR;
m_minFSWPtr = NOENDPTR;
m_maxFSWPtr = NOENDPTR;
m_centreVal = 0;
m_thresholdVal = 0;
m_lostCount = 0U;
m_countdown = 0U;
m_rssiAccum = 0U;
m_rssiCount = 0U;
}
void CNXDNRX::samples(const q15_t* samples, uint16_t* rssi, uint8_t length)
{
for (uint8_t i = 0U; i < length; i++) {
q15_t sample = samples[i];
m_rssiAccum += rssi[i];
m_rssiCount++;
m_bitBuffer[m_bitPtr] <<= 1;
if (sample < 0)
m_bitBuffer[m_bitPtr] |= 0x01U;
m_buffer[m_dataPtr] = sample;
switch (m_state) {
case NXDNRXS_DATA:
processData(sample);
break;
default:
processNone(sample);
break;
}
m_dataPtr++;
if (m_dataPtr >= NXDN_FRAME_LENGTH_SAMPLES)
m_dataPtr = 0U;
m_bitPtr++;
if (m_bitPtr >= NXDN_RADIO_SYMBOL_LENGTH)
m_bitPtr = 0U;
}
}
void CNXDNRX::processNone(q15_t sample)
{
bool ret = correlateFSW();
if (ret) {
// On the first sync, start the countdown to the state change
if (m_countdown == 0U) {
m_rssiAccum = 0U;
m_rssiCount = 0U;
io.setDecode(true);
io.setADCDetection(true);
m_averagePtr = NOAVEPTR;
m_countdown = 5U;
}
}
if (m_countdown > 0U)
m_countdown--;
if (m_countdown == 1U) {
m_minFSWPtr = m_fswPtr + NXDN_FRAME_LENGTH_SAMPLES - 1U;
if (m_minFSWPtr >= NXDN_FRAME_LENGTH_SAMPLES)
m_minFSWPtr -= NXDN_FRAME_LENGTH_SAMPLES;
m_maxFSWPtr = m_fswPtr + 1U;
if (m_maxFSWPtr >= NXDN_FRAME_LENGTH_SAMPLES)
m_maxFSWPtr -= NXDN_FRAME_LENGTH_SAMPLES;
m_state = NXDNRXS_DATA;
m_countdown = 0U;
}
}
void CNXDNRX::processData(q15_t sample)
{
if (m_minFSWPtr < m_maxFSWPtr) {
if (m_dataPtr >= m_minFSWPtr && m_dataPtr <= m_maxFSWPtr)
correlateFSW();
} else {
if (m_dataPtr >= m_minFSWPtr || m_dataPtr <= m_maxFSWPtr)
correlateFSW();
}
if (m_dataPtr == m_endPtr) {
// Only update the centre and threshold if they are from a good sync
if (m_lostCount == MAX_FSW_FRAMES) {
m_minFSWPtr = m_fswPtr + NXDN_FRAME_LENGTH_SAMPLES - 1U;
if (m_minFSWPtr >= NXDN_FRAME_LENGTH_SAMPLES)
m_minFSWPtr -= NXDN_FRAME_LENGTH_SAMPLES;
m_maxFSWPtr = m_fswPtr + 1U;
if (m_maxFSWPtr >= NXDN_FRAME_LENGTH_SAMPLES)
m_maxFSWPtr -= NXDN_FRAME_LENGTH_SAMPLES;
}
calculateLevels(m_startPtr, NXDN_FRAME_LENGTH_SYMBOLS);
DEBUG4("NXDNRX: sync found pos/centre/threshold", m_fswPtr, m_centreVal, m_thresholdVal);
uint8_t frame[NXDN_FRAME_LENGTH_BYTES + 3U];
samplesToBits(m_startPtr, NXDN_FRAME_LENGTH_SYMBOLS, frame, 8U, m_centreVal, m_thresholdVal);
// We've not seen a data sync for too long, signal RXLOST and change to RX_NONE
m_lostCount--;
if (m_lostCount == 0U) {
DEBUG1("NXDNRX: sync timed out, lost lock");
io.setDecode(false);
io.setADCDetection(false);
serial.writeNXDNLost();
m_state = NXDNRXS_NONE;
m_endPtr = NOENDPTR;
m_averagePtr = NOAVEPTR;
m_countdown = 0U;
m_maxCorr = 0;
} else {
frame[0U] = m_lostCount == (MAX_FSW_FRAMES - 1U) ? 0x01U : 0x00U;
writeRSSIData(frame);
m_maxCorr = 0;
}
}
}
bool CNXDNRX::correlateFSW()
{
if (countBits32((m_bitBuffer[m_bitPtr] & NXDN_FSW_SYMBOLS_MASK) ^ NXDN_FSW_SYMBOLS) <= MAX_FSW_SYMBOLS_ERRS) {
uint16_t ptr = m_dataPtr + NXDN_FRAME_LENGTH_SAMPLES - NXDN_FSW_LENGTH_SAMPLES + NXDN_RADIO_SYMBOL_LENGTH;
if (ptr >= NXDN_FRAME_LENGTH_SAMPLES)
ptr -= NXDN_FRAME_LENGTH_SAMPLES;
q31_t corr = 0;
q15_t min = 16000;
q15_t max = -16000;
for (uint8_t i = 0U; i < NXDN_FSW_LENGTH_SYMBOLS; i++) {
q15_t val = m_buffer[ptr];
if (val > max)
max = val;
if (val < min)
min = val;
switch (NXDN_FSW_SYMBOLS_VALUES[i]) {
case +3:
corr -= (val + val + val);
break;
case +1:
corr -= val;
break;
case -1:
corr += val;
break;
default: // -3
corr += (val + val + val);
break;
}
ptr += NXDN_RADIO_SYMBOL_LENGTH;
if (ptr >= NXDN_FRAME_LENGTH_SAMPLES)
ptr -= NXDN_FRAME_LENGTH_SAMPLES;
}
if (corr > m_maxCorr) {
if (m_averagePtr == NOAVEPTR) {
m_centreVal = (max + min) >> 1;
q31_t v1 = (max - m_centreVal) * SCALING_FACTOR;
m_thresholdVal = q15_t(v1 >> 15);
}
uint16_t startPtr = m_dataPtr + NXDN_FRAME_LENGTH_SAMPLES - NXDN_FSW_LENGTH_SAMPLES + NXDN_RADIO_SYMBOL_LENGTH;
if (startPtr >= NXDN_FRAME_LENGTH_SAMPLES)
startPtr -= NXDN_FRAME_LENGTH_SAMPLES;
uint8_t sync[NXDN_FSW_BYTES_LENGTH];
samplesToBits(startPtr, NXDN_FSW_LENGTH_SYMBOLS, sync, 0U, m_centreVal, m_thresholdVal);
uint8_t maxErrs;
if (m_state == NXDNRXS_NONE)
maxErrs = MAX_FSW_BIT_START_ERRS;
else
maxErrs = MAX_FSW_BIT_RUN_ERRS;
uint8_t errs = 0U;
for (uint8_t i = 0U; i < NXDN_FSW_BYTES_LENGTH; i++)
errs += countBits8((sync[i] & NXDN_FSW_BYTES_MASK[i]) ^ NXDN_FSW_BYTES[i]);
if (errs <= maxErrs) {
m_maxCorr = corr;
m_lostCount = MAX_FSW_FRAMES;
m_fswPtr = m_dataPtr;
m_startPtr = startPtr;
m_endPtr = m_dataPtr + NXDN_FRAME_LENGTH_SAMPLES - NXDN_FSW_LENGTH_SAMPLES - 1U;
if (m_endPtr >= NXDN_FRAME_LENGTH_SAMPLES)
m_endPtr -= NXDN_FRAME_LENGTH_SAMPLES;
return true;
}
}
}
return false;
}
void CNXDNRX::calculateLevels(uint16_t start, uint16_t count)
{
q15_t maxPos = -16000;
q15_t minPos = 16000;
q15_t maxNeg = 16000;
q15_t minNeg = -16000;
for (uint16_t i = 0U; i < count; i++) {
q15_t sample = m_buffer[start];
if (sample > 0) {
if (sample > maxPos)
maxPos = sample;
if (sample < minPos)
minPos = sample;
} else {
if (sample < maxNeg)
maxNeg = sample;
if (sample > minNeg)
minNeg = sample;
}
start += NXDN_RADIO_SYMBOL_LENGTH;
if (start >= NXDN_FRAME_LENGTH_SAMPLES)
start -= NXDN_FRAME_LENGTH_SAMPLES;
}
q15_t posThresh = (maxPos + minPos) >> 1;
q15_t negThresh = (maxNeg + minNeg) >> 1;
q15_t centre = (posThresh + negThresh) >> 1;
q15_t threshold = posThresh - centre;
DEBUG5("NXDNRX: pos/neg/centre/threshold", posThresh, negThresh, centre, threshold);
if (m_averagePtr == NOAVEPTR) {
for (uint8_t i = 0U; i < 16U; i++) {
m_centre[i] = centre;
m_threshold[i] = threshold;
}
m_averagePtr = 0U;
} else {
m_centre[m_averagePtr] = centre;
m_threshold[m_averagePtr] = threshold;
m_averagePtr++;
if (m_averagePtr >= 16U)
m_averagePtr = 0U;
}
m_centreVal = 0;
m_thresholdVal = 0;
for (uint8_t i = 0U; i < 16U; i++) {
m_centreVal += m_centre[i];
m_thresholdVal += m_threshold[i];
}
m_centreVal >>= 4;
m_thresholdVal >>= 4;
}
void CNXDNRX::samplesToBits(uint16_t start, uint16_t count, uint8_t* buffer, uint16_t offset, q15_t centre, q15_t threshold)
{
for (uint16_t i = 0U; i < count; i++) {
q15_t sample = m_buffer[start] - centre;
if (sample < -threshold) {
WRITE_BIT1(buffer, offset, false);
offset++;
WRITE_BIT1(buffer, offset, true);
offset++;
} else if (sample < 0) {
WRITE_BIT1(buffer, offset, false);
offset++;
WRITE_BIT1(buffer, offset, false);
offset++;
} else if (sample < threshold) {
WRITE_BIT1(buffer, offset, true);
offset++;
WRITE_BIT1(buffer, offset, false);
offset++;
} else {
WRITE_BIT1(buffer, offset, true);
offset++;
WRITE_BIT1(buffer, offset, true);
offset++;
}
start += NXDN_RADIO_SYMBOL_LENGTH;
if (start >= NXDN_FRAME_LENGTH_SAMPLES)
start -= NXDN_FRAME_LENGTH_SAMPLES;
}
}
void CNXDNRX::writeRSSIData(uint8_t* data)
{
#if defined(SEND_RSSI_DATA)
if (m_rssiCount > 0U) {
uint16_t rssi = m_rssiAccum / m_rssiCount;
data[49U] = (rssi >> 8) & 0xFFU;
data[50U] = (rssi >> 0) & 0xFFU;
serial.writeNXDNData(data, NXDN_FRAME_LENGTH_BYTES + 3U);
} else {
serial.writeNXDNData(data, NXDN_FRAME_LENGTH_BYTES + 1U);
}
#else
serial.writeNXDNData(data, NXDN_FRAME_LENGTH_BYTES + 1U);
#endif
m_rssiAccum = 0U;
m_rssiCount = 0U;
}

69
NXDNRX.h Normal file
View File

@ -0,0 +1,69 @@
/*
* Copyright (C) 2015,2016,2017,2018 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#if !defined(NXDNRX_H)
#define NXDNRX_H
#include "Config.h"
#include "NXDNDefines.h"
enum NXDNRX_STATE {
NXDNRXS_NONE,
NXDNRXS_DATA
};
class CNXDNRX {
public:
CNXDNRX();
void samples(const q15_t* samples, uint16_t* rssi, uint8_t length);
void reset();
private:
NXDNRX_STATE m_state;
uint16_t m_bitBuffer[NXDN_RADIO_SYMBOL_LENGTH];
q15_t m_buffer[NXDN_FRAME_LENGTH_SAMPLES];
uint16_t m_bitPtr;
uint16_t m_dataPtr;
uint16_t m_startPtr;
uint16_t m_endPtr;
uint16_t m_fswPtr;
uint16_t m_minFSWPtr;
uint16_t m_maxFSWPtr;
q31_t m_maxCorr;
uint16_t m_lostCount;
uint8_t m_countdown;
q15_t m_centre[16U];
q15_t m_centreVal;
q15_t m_threshold[16U];
q15_t m_thresholdVal;
uint8_t m_averagePtr;
uint32_t m_rssiAccum;
uint16_t m_rssiCount;
void processNone(q15_t sample);
void processData(q15_t sample);
bool correlateFSW();
void calculateLevels(uint16_t start, uint16_t count);
void samplesToBits(uint16_t start, uint16_t count, uint8_t* buffer, uint16_t offset, q15_t centre, q15_t threshold);
void writeRSSIData(uint8_t* data);
};
#endif

172
NXDNTX.cpp Normal file
View File

@ -0,0 +1,172 @@
/*
* Copyright (C) 2009-2018 by Jonathan Naylor G4KLX
* Copyright (C) 2017 by Andy Uribe CA6JAU
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "Config.h"
#include "Globals.h"
#include "NXDNTX.h"
#include "NXDNDefines.h"
// Generated using rcosdesign(0.2, 8, 20, 'sqrt') in MATLAB
static q15_t RRC_0_2_FILTER[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 201, 174, 140, 99, 52, 0, -55, -112, -170, -226, -278, -325, -365, -397, -417, -427, -424, -407, -377, -333, -277, -208,
-128, -40, 56, 156, 258, 358, 455, 544, 622, 687, 736, 766, 775, 762, 725, 664, 579, 471, 342, 193, 27, -151, -338, -528,
-718, -901, -1072, -1225, -1354, -1454, -1520, -1547, -1530, -1466, -1353, -1189, -972, -704, -385, -18, 394, 846, 1333,
1850, 2388, 2940, 3498, 4053, 4598, 5122, 5619, 6079, 6494, 6859, 7166, 7410, 7588, 7696, 7732, 7696, 7588, 7410, 7166,
6859, 6494, 6079, 5619, 5122, 4598, 4053, 3498, 2940, 2388, 1850, 1333, 846, 394, -18, -385, -704, -972, -1189, -1353,
-1466, -1530, -1547, -1520, -1454, -1354, -1225, -1072, -901, -718, -528, -338, -151, 27, 193, 342, 471, 579, 664, 725,
762, 775, 766, 736, 687, 622, 544, 455, 358, 258, 156, 56, -40, -128, -208, -277, -333, -377, -407, -424, -427, -417, -397,
-365, -325, -278, -226, -170, -112, -55, 0, 52, 99, 140, 174, 201}; // numTaps = 180, L = 20
const uint16_t RRC_0_2_FILTER_PHASE_LEN = 9U; // phaseLength = numTaps/L
static q15_t NXDN_SINC_FILTER[] = {572, -1003, -253, 254, 740, 1290, 1902, 2527, 3090, 3517, 3747, 3747, 3517, 3090, 2527, 1902,
1290, 740, 254, -253, -1003, 572};
const uint16_t NXDN_SINC_FILTER_LEN = 22U;
const q15_t NXDN_LEVELA = 735;
const q15_t NXDN_LEVELB = 245;
const q15_t NXDN_LEVELC = -245;
const q15_t NXDN_LEVELD = -735;
const uint8_t NXDN_PREAMBLE[] = {0x57U, 0x75U, 0xFDU};
const uint8_t NXDN_SYNC = 0x5FU;
CNXDNTX::CNXDNTX() :
m_buffer(4000U),
m_modFilter(),
m_sincFilter(),
m_modState(),
m_sincState(),
m_poBuffer(),
m_poLen(0U),
m_poPtr(0U),
m_txDelay(240U) // 200ms
{
::memset(m_modState, 0x00U, 16U * sizeof(q15_t));
::memset(m_sincState, 0x00U, 70U * sizeof(q15_t));
m_modFilter.L = NXDN_RADIO_SYMBOL_LENGTH;
m_modFilter.phaseLength = RRC_0_2_FILTER_PHASE_LEN;
m_modFilter.pCoeffs = RRC_0_2_FILTER;
m_modFilter.pState = m_modState;
m_sincFilter.numTaps = NXDN_SINC_FILTER_LEN;
m_sincFilter.pState = m_sincState;
m_sincFilter.pCoeffs = NXDN_SINC_FILTER;
}
void CNXDNTX::process()
{
if (m_buffer.getData() == 0U && m_poLen == 0U)
return;
if (m_poLen == 0U) {
if (!m_tx) {
for (uint16_t i = 0U; i < m_txDelay; i++)
m_poBuffer[m_poLen++] = NXDN_SYNC;
m_poBuffer[m_poLen++] = NXDN_PREAMBLE[0U];
m_poBuffer[m_poLen++] = NXDN_PREAMBLE[1U];
m_poBuffer[m_poLen++] = NXDN_PREAMBLE[2U];
} else {
for (uint8_t i = 0U; i < NXDN_FRAME_LENGTH_BYTES; i++) {
uint8_t c = m_buffer.get();
m_poBuffer[m_poLen++] = c;
}
}
m_poPtr = 0U;
}
if (m_poLen > 0U) {
uint16_t space = io.getSpace();
while (space > (4U * NXDN_RADIO_SYMBOL_LENGTH)) {
uint8_t c = m_poBuffer[m_poPtr++];
writeByte(c);
space -= 4U * NXDN_RADIO_SYMBOL_LENGTH;
if (m_poPtr >= m_poLen) {
m_poPtr = 0U;
m_poLen = 0U;
return;
}
}
}
}
uint8_t CNXDNTX::writeData(const uint8_t* data, uint8_t length)
{
if (length != (NXDN_FRAME_LENGTH_BYTES + 1U))
return 4U;
uint16_t space = m_buffer.getSpace();
if (space < NXDN_FRAME_LENGTH_BYTES)
return 5U;
for (uint8_t i = 0U; i < NXDN_FRAME_LENGTH_BYTES; i++)
m_buffer.put(data[i + 1U]);
return 0U;
}
void CNXDNTX::writeByte(uint8_t c)
{
q15_t inBuffer[4U];
q15_t intBuffer[NXDN_RADIO_SYMBOL_LENGTH * 4U];
q15_t outBuffer[NXDN_RADIO_SYMBOL_LENGTH * 4U];
const uint8_t MASK = 0xC0U;
for (uint8_t i = 0U; i < 4U; i++, c <<= 2) {
switch (c & MASK) {
case 0xC0U:
inBuffer[i] = NXDN_LEVELA;
break;
case 0x80U:
inBuffer[i] = NXDN_LEVELB;
break;
case 0x00U:
inBuffer[i] = NXDN_LEVELC;
break;
default:
inBuffer[i] = NXDN_LEVELD;
break;
}
}
::arm_fir_interpolate_q15(&m_modFilter, inBuffer, intBuffer, 4U);
::arm_fir_fast_q15(&m_sincFilter, intBuffer, outBuffer, NXDN_RADIO_SYMBOL_LENGTH * 4U);
io.write(STATE_NXDN, outBuffer, NXDN_RADIO_SYMBOL_LENGTH * 4U);
}
void CNXDNTX::setTXDelay(uint8_t delay)
{
m_txDelay = 300U + uint16_t(delay) * 6U; // 500ms + tx delay
if (m_txDelay > 1200U)
m_txDelay = 1200U;
}
uint8_t CNXDNTX::getSpace() const
{
return m_buffer.getSpace() / NXDN_FRAME_LENGTH_BYTES;
}

53
NXDNTX.h Normal file
View File

@ -0,0 +1,53 @@
/*
* Copyright (C) 2015,2016,2017,2018 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#if !defined(NXDNTX_H)
#define NXDNTX_H
#include "Config.h"
#include "SerialRB.h"
class CNXDNTX {
public:
CNXDNTX();
uint8_t writeData(const uint8_t* data, uint8_t length);
void process();
void setTXDelay(uint8_t delay);
uint8_t getSpace() const;
private:
CSerialRB m_buffer;
arm_fir_interpolate_instance_q15 m_modFilter;
arm_fir_instance_q15 m_sincFilter;
q15_t m_modState[16U]; // blockSize + phaseLength - 1, 4 + 9 - 1 plus some spare
q15_t m_sincState[70U]; // NoTaps + BlockSize - 1, 22 + 40 - 1 plus some spare
uint8_t m_poBuffer[1200U];
uint16_t m_poLen;
uint16_t m_poPtr;
uint16_t m_txDelay;
void writeByte(uint8_t c);
};
#endif

View File

@ -1,5 +1,6 @@
/*
* Copyright (C) 2016 by Jonathan Naylor G4KLX
* Copyright (C) 2016,2017 by Jonathan Naylor G4KLX
* Copyright (C) 2018 by Bryan Biedenkapp <gatekeep@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -24,25 +25,37 @@ const unsigned int P25_RADIO_SYMBOL_LENGTH = 10U; // At 48 kHz sample rate
const unsigned int P25_HDR_FRAME_LENGTH_BYTES = 99U;
const unsigned int P25_HDR_FRAME_LENGTH_BITS = P25_HDR_FRAME_LENGTH_BYTES * 8U;
const unsigned int P25_HDR_FRAME_LENGTH_SYMBOLS = P25_HDR_FRAME_LENGTH_BYTES * 4U;
const unsigned int P25_HDR_FRAME_LENGTH_SAMPLES = P25_HDR_FRAME_LENGTH_SYMBOLS * P25_RADIO_SYMBOL_LENGTH;
const unsigned int P25_LDU_FRAME_LENGTH_BYTES = 216U;
const unsigned int P25_LDU_FRAME_LENGTH_BITS = P25_LDU_FRAME_LENGTH_BYTES * 8U;
const unsigned int P25_LDU_FRAME_LENGTH_SYMBOLS = P25_LDU_FRAME_LENGTH_BYTES * 4U;
const unsigned int P25_LDU_FRAME_LENGTH_SAMPLES = P25_LDU_FRAME_LENGTH_SYMBOLS * P25_RADIO_SYMBOL_LENGTH;
const unsigned int P25_TERMLC_FRAME_LENGTH_BYTES = 54U;
const unsigned int P25_TERMLC_FRAME_LENGTH_BITS = P25_TERMLC_FRAME_LENGTH_BYTES * 8U;
const unsigned int P25_TERMLC_FRAME_LENGTH_SYMBOLS = P25_TERMLC_FRAME_LENGTH_BYTES * 4U;
const unsigned int P25_TERMLC_FRAME_LENGTH_SAMPLES = P25_TERMLC_FRAME_LENGTH_SYMBOLS * P25_RADIO_SYMBOL_LENGTH;
const unsigned int P25_TERM_FRAME_LENGTH_BYTES = 18U;
const unsigned int P25_TERM_FRAME_LENGTH_BITS = P25_TERM_FRAME_LENGTH_BYTES * 8U;
const unsigned int P25_TERM_FRAME_LENGTH_SYMBOLS = P25_TERM_FRAME_LENGTH_BYTES * 4U;
const unsigned int P25_TERM_FRAME_LENGTH_SAMPLES = P25_TERM_FRAME_LENGTH_SYMBOLS * P25_RADIO_SYMBOL_LENGTH;
const unsigned int P25_TSDU_FRAME_LENGTH_BYTES = 45U;
const unsigned int P25_TSDU_FRAME_LENGTH_BITS = P25_TSDU_FRAME_LENGTH_BYTES * 8U;
const unsigned int P25_TSDU_FRAME_LENGTH_SYMBOLS = P25_TSDU_FRAME_LENGTH_BYTES * 4U;
const unsigned int P25_TSDU_FRAME_LENGTH_SAMPLES = P25_TSDU_FRAME_LENGTH_SYMBOLS * P25_RADIO_SYMBOL_LENGTH;
const unsigned int P25_SYNC_LENGTH_BYTES = 6U;
const unsigned int P25_SYNC_LENGTH_BITS = P25_SYNC_LENGTH_BYTES * 8U;
const unsigned int P25_SYNC_LENGTH_SYMBOLS = P25_SYNC_LENGTH_BYTES * 4U;
const unsigned int P25_SYNC_LENGTH_SAMPLES = P25_SYNC_LENGTH_SYMBOLS * P25_RADIO_SYMBOL_LENGTH;
const unsigned int P25_NID_LENGTH_BITS = 64U;
const unsigned int P25_NID_LENGTH_SYMBOLS = 32U;
const unsigned int P25_NID_LENGTH_BYTES = 8U;
const unsigned int P25_NID_LENGTH_BITS = P25_NID_LENGTH_BYTES * 8U;
const unsigned int P25_NID_LENGTH_SYMBOLS = P25_NID_LENGTH_BYTES * 4U;
const unsigned int P25_NID_LENGTH_SAMPLES = P25_NID_LENGTH_SYMBOLS * P25_RADIO_SYMBOL_LENGTH;
const uint8_t P25_SYNC_BYTES[] = {0x55U, 0x75U, 0xF5U, 0xFFU, 0x77U, 0xFFU};
const uint8_t P25_SYNC_BYTES_LENGTH = 6U;
@ -54,8 +67,18 @@ const uint64_t P25_SYNC_BITS_MASK = 0x0000FFFFFFFFFFFFU;
// 01 01 01 01 01 11 01 01 11 11 01 01 11 11 11 11 01 11 01 11 11 11 11 11
// +3 +3 +3 +3 +3 -3 +3 +3 -3 -3 +3 +3 -3 -3 -3 -3 +3 -3 +3 -3 -3 -3 -3 -3
const int8_t P25_SYNC_SYMBOLS_VALUES[] = {+3, +3, +3, +3, +3, -3, +3, +3, -3, -3, +3, +3, -3, -3, -3, -3, +3, -3, +3, -3, -3, -3, -3, -3};
const uint32_t P25_SYNC_SYMBOLS = 0x00FB30A0U;
const uint32_t P25_SYNC_SYMBOLS_MASK = 0x00FFFFFFU;
const uint8_t P25_DUID_HDU = 0x00U; // Header Data Unit
const uint8_t P25_DUID_TDU = 0x03U; // Simple Terminator Data Unit
const uint8_t P25_DUID_LDU1 = 0x05U; // Logical Link Data Unit 1
const uint8_t P25_DUID_TSDU = 0x07U; // Trunking System Data Unit
const uint8_t P25_DUID_LDU2 = 0x0AU; // Logical Link Data Unit 2
const uint8_t P25_DUID_PDU = 0x0CU; // Packet Data Unit
const uint8_t P25_DUID_TDULC = 0x0FU; // Terminator Data Unit with Link Control
#endif

611
P25RX.cpp
View File

@ -1,5 +1,6 @@
/*
* Copyright (C) 2016 by Jonathan Naylor G4KLX
* Copyright (C) 2009-2017 by Jonathan Naylor G4KLX
* Copyright (C) 2018 by Bryan Biedenkapp <gatekeep@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -16,227 +17,270 @@
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
// #define WANT_DEBUG
#include "Config.h"
#include "Globals.h"
#include "P25RX.h"
#include "Utils.h"
const unsigned int BUFFER_LENGTH = 200U;
const q15_t SCALING_FACTOR = 18750; // Q15(0.57)
const q15_t SCALING_FACTOR = 18750; // Q15(0.55)
const uint8_t CORRELATION_COUNTDOWN = 10U;//5U;
const uint32_t PLLMAX = 0x10000U;
const uint32_t PLLINC = PLLMAX / P25_RADIO_SYMBOL_LENGTH;
const uint32_t INC = PLLINC / 32U;
const uint8_t MAX_SYNC_BIT_START_ERRS = 2U;
const uint8_t MAX_SYNC_BIT_RUN_ERRS = 4U;
const uint8_t SYNC_SYMBOL_ERRS = 0U;
const uint8_t MAX_SYNC_SYMBOLS_ERRS = 2U;
const uint8_t SYNC_BIT_START_ERRS = 2U;
const uint8_t SYNC_BIT_RUN_ERRS = 4U;
const unsigned int MAX_SYNC_FRAMES = 3U + 1U;
const uint8_t BIT_MASK_TABLE[] = {0x80U, 0x40U, 0x20U, 0x10U, 0x08U, 0x04U, 0x02U, 0x01U};
const uint8_t BIT_MASK_TABLE[] = { 0x80U, 0x40U, 0x20U, 0x10U, 0x08U, 0x04U, 0x02U, 0x01U };
#define WRITE_BIT1(p,i,b) p[(i)>>3] = (b) ? (p[(i)>>3] | BIT_MASK_TABLE[(i)&7]) : (p[(i)>>3] & ~BIT_MASK_TABLE[(i)&7])
#define READ_BIT1(p,i) (p[(i)>>3] & BIT_MASK_TABLE[(i)&7])
const uint8_t NOAVEPTR = 99U;
const uint16_t NOENDPTR = 9999U;
const unsigned int MAX_SYNC_FRAMES = 4U + 1U;
CP25RX::CP25RX() :
m_pll(0U),
m_prev(false),
m_state(P25RXS_NONE),
m_bitBuffer(0x00U),
m_symbols(),
m_outBuffer(),
m_buffer(NULL),
m_bufferPtr(0U),
m_symbolPtr(0U),
m_bitBuffer(),
m_buffer(),
m_bitPtr(0U),
m_dataPtr(0U),
m_hdrStartPtr(NOENDPTR),
m_lduStartPtr(NOENDPTR),
m_lduEndPtr(NOENDPTR),
m_minSyncPtr(NOENDPTR),
m_maxSyncPtr(NOENDPTR),
m_hdrSyncPtr(NOENDPTR),
m_lduSyncPtr(NOENDPTR),
m_maxCorr(0),
m_lostCount(0U),
m_centre(0),
m_threshold(0)
m_countdown(0U),
m_centre(),
m_centreVal(0),
m_threshold(),
m_thresholdVal(0),
m_averagePtr(NOAVEPTR),
m_rssiAccum(0U),
m_rssiCount(0U),
m_duid(0U)
{
m_buffer = m_outBuffer + 1U;
}
void CP25RX::reset()
{
m_pll = 0U;
m_prev = false;
m_state = P25RXS_NONE;
m_bitBuffer = 0x00U;
m_bufferPtr = 0U;
m_symbolPtr = 0U;
m_dataPtr = 0U;
m_bitPtr = 0U;
m_maxCorr = 0;
m_averagePtr = NOAVEPTR;
m_hdrStartPtr = NOENDPTR;
m_lduStartPtr = NOENDPTR;
m_lduEndPtr = NOENDPTR;
m_hdrSyncPtr = NOENDPTR;
m_lduSyncPtr = NOENDPTR;
m_minSyncPtr = NOENDPTR;
m_maxSyncPtr = NOENDPTR;
m_centreVal = 0;
m_thresholdVal = 0;
m_lostCount = 0U;
m_centre = 0;
m_threshold = 0;
m_countdown = 0U;
m_rssiAccum = 0U;
m_rssiCount = 0U;
m_duid = 0U;
}
void CP25RX::samples(const q15_t* samples, uint8_t length)
void CP25RX::samples(const q15_t* samples, uint16_t* rssi, uint8_t length)
{
for (uint16_t i = 0U; i < length; i++) {
bool bit = samples[i] < 0;
for (uint8_t i = 0U; i < length; i++) {
q15_t sample = samples[i];
if (bit != m_prev) {
if (m_pll < (PLLMAX / 2U))
m_pll += INC;
else
m_pll -= INC;
m_rssiAccum += rssi[i];
m_rssiCount++;
m_bitBuffer[m_bitPtr] <<= 1;
if (sample < 0)
m_bitBuffer[m_bitPtr] |= 0x01U;
m_buffer[m_dataPtr] = sample;
switch (m_state) {
case P25RXS_HDR:
processHdr(sample);
break;
case P25RXS_LDU:
processLdu(sample);
break;
default:
processNone(sample);
break;
}
m_prev = bit;
m_pll += PLLINC;
if (m_pll >= PLLMAX) {
m_pll -= PLLMAX;
if (m_state == P25RXS_NONE)
processNone(samples[i]);
else
processData(samples[i]);
m_dataPtr++;
if (m_dataPtr >= P25_LDU_FRAME_LENGTH_SAMPLES) {
m_dataPtr = 0U;
m_duid = 0U;
}
m_bitPtr++;
if (m_bitPtr >= P25_RADIO_SYMBOL_LENGTH)
m_bitPtr = 0U;
}
}
void CP25RX::processNone(q15_t sample)
{
m_symbolBuffer <<= 1;
if (sample < 0)
m_symbolBuffer |= 0x01U;
m_symbols[m_symbolPtr] = sample;
// Fuzzy matching of the data sync bit sequence
if (countBits32((m_symbolBuffer & P25_SYNC_SYMBOLS_MASK) ^ P25_SYNC_SYMBOLS) <= SYNC_SYMBOL_ERRS) {
q15_t max = -16000;
q15_t min = 16000;
for (uint8_t i = 0U; i < P25_SYNC_LENGTH_SYMBOLS; i++) {
q15_t val = m_symbols[i];
if (val > max)
max = val;
if (val < min)
min = val;
}
q15_t centre = (max + min) >> 1;
q31_t v1 = (max - centre) * SCALING_FACTOR;
q15_t threshold = q15_t(v1 >> 15);
uint16_t ptr = m_symbolPtr + 1U;
if (ptr >= P25_SYNC_LENGTH_SYMBOLS)
ptr = 0U;
for (uint8_t i = 0U; i < P25_SYNC_LENGTH_SYMBOLS; i++) {
q15_t sample = m_symbols[ptr] - centre;
if (sample < -threshold) {
m_bitBuffer <<= 2;
m_bitBuffer |= 0x01U;
} else if (sample < 0) {
m_bitBuffer <<= 2;
m_bitBuffer |= 0x00U;
} else if (sample < threshold) {
m_bitBuffer <<= 2;
m_bitBuffer |= 0x02U;
} else {
m_bitBuffer <<= 2;
m_bitBuffer |= 0x03U;
}
ptr++;
if (ptr >= P25_SYNC_LENGTH_SYMBOLS)
ptr = 0U;
}
// Fuzzy matching of the data sync bit sequence
if (countBits64((m_bitBuffer & P25_SYNC_BITS_MASK) ^ P25_SYNC_BITS) <= SYNC_BIT_START_ERRS) {
DEBUG5("P25RX: sync found in None min/max/centre/threshold", min, max, centre, threshold);
for (uint8_t i = 0U; i < P25_SYNC_LENGTH_BYTES; i++)
m_buffer[i] = P25_SYNC_BYTES[i];
m_centre = centre;
m_threshold = threshold;
m_lostCount = MAX_SYNC_FRAMES;
m_bufferPtr = P25_SYNC_LENGTH_BITS;
m_state = P25RXS_DATA;
bool ret = correlateSync();
if (ret) {
// On the first sync, start the countdown to the state change
if (m_countdown == 0U) {
m_rssiAccum = 0U;
m_rssiCount = 0U;
io.setDecode(true);
io.setADCDetection(true);
m_averagePtr = NOAVEPTR;
m_countdown = CORRELATION_COUNTDOWN;
}
}
m_symbolPtr++;
if (m_symbolPtr >= P25_SYNC_LENGTH_SYMBOLS)
m_symbolPtr = 0U;
if (m_countdown > 0U)
m_countdown--;
if (m_countdown == 1U) {
// These are the sync positions for the following LDU after a HDR
m_minSyncPtr = m_hdrSyncPtr + P25_HDR_FRAME_LENGTH_SAMPLES - 1U;
if (m_minSyncPtr >= P25_LDU_FRAME_LENGTH_SAMPLES)
m_minSyncPtr -= P25_LDU_FRAME_LENGTH_SAMPLES;
m_maxSyncPtr = m_hdrSyncPtr + P25_HDR_FRAME_LENGTH_SAMPLES + 1U;
if (m_maxSyncPtr >= P25_LDU_FRAME_LENGTH_SAMPLES)
m_maxSyncPtr -= P25_LDU_FRAME_LENGTH_SAMPLES;
m_state = P25RXS_HDR;
m_countdown = 0U;
}
}
void CP25RX::processData(q15_t sample)
void CP25RX::processHdr(q15_t sample)
{
sample -= m_centre;
if (sample < -m_threshold) {
m_bitBuffer <<= 2;
m_bitBuffer |= 0x01U;
WRITE_BIT1(m_buffer, m_bufferPtr, false);
m_bufferPtr++;
WRITE_BIT1(m_buffer, m_bufferPtr, true);
m_bufferPtr++;
} else if (sample < 0) {
m_bitBuffer <<= 2;
m_bitBuffer |= 0x00U;
WRITE_BIT1(m_buffer, m_bufferPtr, false);
m_bufferPtr++;
WRITE_BIT1(m_buffer, m_bufferPtr, false);
m_bufferPtr++;
} else if (sample < m_threshold) {
m_bitBuffer <<= 2;
m_bitBuffer |= 0x02U;
WRITE_BIT1(m_buffer, m_bufferPtr, true);
m_bufferPtr++;
WRITE_BIT1(m_buffer, m_bufferPtr, false);
m_bufferPtr++;
if (m_minSyncPtr < m_maxSyncPtr) {
if (m_dataPtr >= m_minSyncPtr && m_dataPtr <= m_maxSyncPtr)
correlateSync();
} else {
m_bitBuffer <<= 2;
m_bitBuffer |= 0x03U;
WRITE_BIT1(m_buffer, m_bufferPtr, true);
m_bufferPtr++;
WRITE_BIT1(m_buffer, m_bufferPtr, true);
m_bufferPtr++;
if (m_dataPtr >= m_minSyncPtr || m_dataPtr <= m_maxSyncPtr)
correlateSync();
}
// Search for an early sync to indicate an LDU following a header
if (m_bufferPtr >= (P25_HDR_FRAME_LENGTH_BITS + P25_SYNC_LENGTH_BITS - 1U) && m_bufferPtr <= (P25_HDR_FRAME_LENGTH_BITS + P25_SYNC_LENGTH_BITS + 1U)) {
// Fuzzy matching of the data sync bit sequence
if (countBits64((m_bitBuffer & P25_SYNC_BITS_MASK) ^ P25_SYNC_BITS) <= SYNC_BIT_RUN_ERRS) {
DEBUG2("P25RX: found LDU sync in Data, pos", m_bufferPtr - P25_SYNC_LENGTH_BITS);
if (m_dataPtr == m_maxSyncPtr) {
uint16_t nidStartPtr = m_hdrStartPtr + P25_SYNC_LENGTH_SAMPLES;
if (nidStartPtr >= P25_LDU_FRAME_LENGTH_SAMPLES)
nidStartPtr -= P25_LDU_FRAME_LENGTH_SAMPLES;
m_outBuffer[0U] = 0x01U;
serial.writeP25Hdr(m_outBuffer, P25_HDR_FRAME_LENGTH_BYTES + 1U);
uint8_t nid[2U];
samplesToBits(nidStartPtr, (2U * 4U), nid, 0U, m_centreVal, m_thresholdVal);
// DEBUG3("P25RX: nid (b0 - b1)", nid[0U], nid[1U]);
// Restore the sync that's now in the wrong place
for (uint8_t i = 0U; i < P25_SYNC_LENGTH_BYTES; i++)
m_buffer[i] = P25_SYNC_BYTES[i];
m_duid = nid[1U] & 0x0F;
m_lostCount = MAX_SYNC_FRAMES;
m_bufferPtr = P25_SYNC_LENGTH_BITS;
switch (m_duid) {
case P25_DUID_HDU: {
calculateLevels(m_hdrStartPtr, P25_HDR_FRAME_LENGTH_SYMBOLS);
DEBUG4("P25RX: sync found in Hdr pos/centre/threshold", m_hdrSyncPtr, m_centreVal, m_thresholdVal);
uint8_t frame[P25_HDR_FRAME_LENGTH_BYTES + 1U];
samplesToBits(m_hdrStartPtr, P25_HDR_FRAME_LENGTH_SYMBOLS, frame, 8U, m_centreVal, m_thresholdVal);
frame[0U] = 0x01U;
serial.writeP25Hdr(frame, P25_HDR_FRAME_LENGTH_BYTES + 1U);
}
break;
case P25_DUID_TSDU: {
calculateLevels(m_hdrStartPtr, P25_TSDU_FRAME_LENGTH_SYMBOLS);
DEBUG4("P25RX: sync found in TSDU pos/centre/threshold", m_hdrSyncPtr, m_centreVal, m_thresholdVal);
uint8_t frame[P25_TSDU_FRAME_LENGTH_BYTES + 1U];
samplesToBits(m_hdrStartPtr, P25_TSDU_FRAME_LENGTH_SYMBOLS, frame, 8U, m_centreVal, m_thresholdVal);
frame[0U] = 0x01U;
serial.writeP25Hdr(frame, P25_TSDU_FRAME_LENGTH_BYTES + 1U);
}
break;
case P25_DUID_TDU: {
calculateLevels(m_hdrStartPtr, P25_TERM_FRAME_LENGTH_SYMBOLS);
DEBUG4("P25RX: sync found in TDU pos/centre/threshold", m_hdrSyncPtr, m_centreVal, m_thresholdVal);
uint8_t frame[P25_TERM_FRAME_LENGTH_BYTES + 1U];
samplesToBits(m_hdrStartPtr, P25_TERM_FRAME_LENGTH_SYMBOLS, frame, 8U, m_centreVal, m_thresholdVal);
frame[0U] = 0x01U;
serial.writeP25Hdr(frame, P25_TERM_FRAME_LENGTH_BYTES + 1U);
}
break;
case P25_DUID_TDULC: {
calculateLevels(m_hdrStartPtr, P25_TERMLC_FRAME_LENGTH_SYMBOLS);
DEBUG4("P25RX: sync found in TDULC pos/centre/threshold", m_hdrSyncPtr, m_centreVal, m_thresholdVal);
uint8_t frame[P25_TERMLC_FRAME_LENGTH_BYTES + 1U];
samplesToBits(m_hdrStartPtr, P25_TERMLC_FRAME_LENGTH_SYMBOLS, frame, 8U, m_centreVal, m_thresholdVal);
frame[0U] = 0x01U;
serial.writeP25Hdr(frame, P25_TERMLC_FRAME_LENGTH_BYTES + 1U);
}
break;
default:
break;
}
// Only search for a sync in the right place +-2 symbols
if (m_bufferPtr >= (P25_SYNC_LENGTH_BITS - 2U) && m_bufferPtr <= (P25_SYNC_LENGTH_BITS + 2U)) {
// Fuzzy matching of the data sync bit sequence
if (countBits64((m_bitBuffer & P25_SYNC_BITS_MASK) ^ P25_SYNC_BITS) <= SYNC_BIT_RUN_ERRS) {
DEBUG2("P25RX: found sync in Data, pos", m_bufferPtr - P25_SYNC_LENGTH_BITS);
m_lostCount = MAX_SYNC_FRAMES;
m_bufferPtr = P25_SYNC_LENGTH_BITS;
m_minSyncPtr = m_lduSyncPtr + P25_LDU_FRAME_LENGTH_SAMPLES - 1U;
if (m_minSyncPtr >= P25_LDU_FRAME_LENGTH_SAMPLES)
m_minSyncPtr -= P25_LDU_FRAME_LENGTH_SAMPLES;
m_maxSyncPtr = m_lduSyncPtr + 1U;
if (m_maxSyncPtr >= P25_LDU_FRAME_LENGTH_SAMPLES)
m_maxSyncPtr -= P25_LDU_FRAME_LENGTH_SAMPLES;
m_state = P25RXS_LDU;
m_maxCorr = 0;
}
}
void CP25RX::processLdu(q15_t sample)
{
if (m_minSyncPtr < m_maxSyncPtr) {
if (m_dataPtr >= m_minSyncPtr && m_dataPtr <= m_maxSyncPtr)
correlateSync();
} else {
if (m_dataPtr >= m_minSyncPtr || m_dataPtr <= m_maxSyncPtr)
correlateSync();
}
// Send a data frame to the host if the required number of bits have been received
if (m_bufferPtr == P25_LDU_FRAME_LENGTH_BITS) {
if (m_dataPtr == m_lduEndPtr) {
// Only update the centre and threshold if they are from a good sync
if (m_lostCount == MAX_SYNC_FRAMES) {
m_minSyncPtr = m_lduSyncPtr + P25_LDU_FRAME_LENGTH_SAMPLES - 1U;
if (m_minSyncPtr >= P25_LDU_FRAME_LENGTH_SAMPLES)
m_minSyncPtr -= P25_LDU_FRAME_LENGTH_SAMPLES;
m_maxSyncPtr = m_lduSyncPtr + 1U;
if (m_maxSyncPtr >= P25_LDU_FRAME_LENGTH_SAMPLES)
m_maxSyncPtr -= P25_LDU_FRAME_LENGTH_SAMPLES;
}
calculateLevels(m_lduStartPtr, P25_LDU_FRAME_LENGTH_SYMBOLS);
DEBUG4("P25RX: sync found in Ldu pos/centre/threshold", m_lduSyncPtr, m_centreVal, m_thresholdVal);
uint8_t frame[P25_LDU_FRAME_LENGTH_BYTES + 3U];
samplesToBits(m_lduStartPtr, P25_LDU_FRAME_LENGTH_SYMBOLS, frame, 8U, m_centreVal, m_thresholdVal);
// We've not seen a data sync for too long, signal RXLOST and change to RX_NONE
m_lostCount--;
if (m_lostCount == 0U) {
@ -248,15 +292,234 @@ void CP25RX::processData(q15_t sample)
serial.writeP25Lost();
m_state = P25RXS_NONE;
m_lduEndPtr = NOENDPTR;
m_averagePtr = NOAVEPTR;
m_countdown = 0U;
m_maxCorr = 0;
m_duid = 0U;
} else {
m_outBuffer[0U] = m_lostCount == (MAX_SYNC_FRAMES - 1U) ? 0x01U : 0x00U;
serial.writeP25Ldu(m_outBuffer, P25_LDU_FRAME_LENGTH_BYTES + 1U);
// Start the next frame
::memset(m_outBuffer, 0x00U, P25_LDU_FRAME_LENGTH_BYTES + 3U);
m_bufferPtr = 0U;
frame[0U] = m_lostCount == (MAX_SYNC_FRAMES - 1U) ? 0x01U : 0x00U;
writeRSSILdu(frame);
m_maxCorr = 0;
}
}
}
bool CP25RX::correlateSync()
{
if (countBits32((m_bitBuffer[m_bitPtr] & P25_SYNC_SYMBOLS_MASK) ^ P25_SYNC_SYMBOLS) <= MAX_SYNC_SYMBOLS_ERRS) {
uint16_t ptr = m_dataPtr + P25_LDU_FRAME_LENGTH_SAMPLES - P25_SYNC_LENGTH_SAMPLES + P25_RADIO_SYMBOL_LENGTH;
if (ptr >= P25_LDU_FRAME_LENGTH_SAMPLES)
ptr -= P25_LDU_FRAME_LENGTH_SAMPLES;
q31_t corr = 0;
q15_t min = 16000;
q15_t max = -16000;
for (uint8_t i = 0U; i < P25_SYNC_LENGTH_SYMBOLS; i++) {
q15_t val = m_buffer[ptr];
if (val > max)
max = val;
if (val < min)
min = val;
switch (P25_SYNC_SYMBOLS_VALUES[i]) {
case +3:
corr -= (val + val + val);
break;
case +1:
corr -= val;
break;
case -1:
corr += val;
break;
default: // -3
corr += (val + val + val);
break;
}
ptr += P25_RADIO_SYMBOL_LENGTH;
if (ptr >= P25_LDU_FRAME_LENGTH_SAMPLES)
ptr -= P25_LDU_FRAME_LENGTH_SAMPLES;
}
if (corr > m_maxCorr) {
if (m_averagePtr == NOAVEPTR) {
m_centreVal = (max + min) >> 1;
q31_t v1 = (max - m_centreVal) * SCALING_FACTOR;
m_thresholdVal = q15_t(v1 >> 15);
}
uint16_t startPtr = m_dataPtr + P25_LDU_FRAME_LENGTH_SAMPLES - P25_SYNC_LENGTH_SAMPLES + P25_RADIO_SYMBOL_LENGTH;
if (startPtr >= P25_LDU_FRAME_LENGTH_SAMPLES)
startPtr -= P25_LDU_FRAME_LENGTH_SAMPLES;
uint8_t sync[P25_SYNC_BYTES_LENGTH];
samplesToBits(startPtr, P25_SYNC_LENGTH_SYMBOLS, sync, 0U, m_centreVal, m_thresholdVal);
uint8_t maxErrs;
if (m_state == P25RXS_NONE)
maxErrs = MAX_SYNC_BIT_START_ERRS;
else
maxErrs = MAX_SYNC_BIT_RUN_ERRS;
uint8_t errs = 0U;
for (uint8_t i = 0U; i < P25_SYNC_BYTES_LENGTH; i++)
errs += countBits8(sync[i] ^ P25_SYNC_BYTES[i]);
if (errs <= maxErrs) {
m_maxCorr = corr;
m_lostCount = MAX_SYNC_FRAMES;
m_lduSyncPtr = m_dataPtr;
// These are the positions of the start and end of an LDU
m_lduStartPtr = startPtr;
m_lduEndPtr = m_dataPtr + P25_LDU_FRAME_LENGTH_SAMPLES - P25_SYNC_LENGTH_SAMPLES - 1U;
if (m_lduEndPtr >= P25_LDU_FRAME_LENGTH_SAMPLES)
m_lduEndPtr -= P25_LDU_FRAME_LENGTH_SAMPLES;
if (m_state == P25RXS_NONE) {
m_hdrSyncPtr = m_dataPtr;
// This is the position of the start of a HDR
m_hdrStartPtr = startPtr;
// These are the range of positions for a sync for an LDU following a HDR
m_minSyncPtr = m_dataPtr + P25_HDR_FRAME_LENGTH_SAMPLES - 1U;
if (m_minSyncPtr >= P25_LDU_FRAME_LENGTH_SAMPLES)
m_minSyncPtr -= P25_LDU_FRAME_LENGTH_SAMPLES;
m_maxSyncPtr = m_dataPtr + P25_HDR_FRAME_LENGTH_SAMPLES + 1U;
if (m_maxSyncPtr >= P25_LDU_FRAME_LENGTH_SAMPLES)
m_maxSyncPtr -= P25_LDU_FRAME_LENGTH_SAMPLES;
}
return true;
}
}
}
return false;
}
void CP25RX::calculateLevels(uint16_t start, uint16_t count)
{
q15_t maxPos = -16000;
q15_t minPos = 16000;
q15_t maxNeg = 16000;
q15_t minNeg = -16000;
for (uint16_t i = 0U; i < count; i++) {
q15_t sample = m_buffer[start];
if (sample > 0) {
if (sample > maxPos)
maxPos = sample;
if (sample < minPos)
minPos = sample;
} else {
if (sample < maxNeg)
maxNeg = sample;
if (sample > minNeg)
minNeg = sample;
}
start += P25_RADIO_SYMBOL_LENGTH;
if (start >= P25_LDU_FRAME_LENGTH_SAMPLES)
start -= P25_LDU_FRAME_LENGTH_SAMPLES;
}
q15_t posThresh = (maxPos + minPos) >> 1;
q15_t negThresh = (maxNeg + minNeg) >> 1;
q15_t centre = (posThresh + negThresh) >> 1;
q15_t threshold = posThresh - centre;
DEBUG5("P25RX: pos/neg/centre/threshold", posThresh, negThresh, centre, threshold);
if (m_averagePtr == NOAVEPTR) {
for (uint8_t i = 0U; i < 16U; i++) {
m_centre[i] = centre;
m_threshold[i] = threshold;
}
m_averagePtr = 0U;
} else {
m_centre[m_averagePtr] = centre;
m_threshold[m_averagePtr] = threshold;
m_averagePtr++;
if (m_averagePtr >= 16U)
m_averagePtr = 0U;
}
m_centreVal = 0;
m_thresholdVal = 0;
for (uint8_t i = 0U; i < 16U; i++) {
m_centreVal += m_centre[i];
m_thresholdVal += m_threshold[i];
}
m_centreVal >>= 4;
m_thresholdVal >>= 4;
}
void CP25RX::samplesToBits(uint16_t start, uint16_t count, uint8_t* buffer, uint16_t offset, q15_t centre, q15_t threshold)
{
for (uint16_t i = 0U; i < count; i++) {
q15_t sample = m_buffer[start] - centre;
if (sample < -threshold) {
WRITE_BIT1(buffer, offset, false);
offset++;
WRITE_BIT1(buffer, offset, true);
offset++;
} else if (sample < 0) {
WRITE_BIT1(buffer, offset, false);
offset++;
WRITE_BIT1(buffer, offset, false);
offset++;
} else if (sample < threshold) {
WRITE_BIT1(buffer, offset, true);
offset++;
WRITE_BIT1(buffer, offset, false);
offset++;
} else {
WRITE_BIT1(buffer, offset, true);
offset++;
WRITE_BIT1(buffer, offset, true);
offset++;
}
start += P25_RADIO_SYMBOL_LENGTH;
if (start >= P25_LDU_FRAME_LENGTH_SAMPLES)
start -= P25_LDU_FRAME_LENGTH_SAMPLES;
}
}
void CP25RX::writeRSSILdu(uint8_t* ldu)
{
#if defined(SEND_RSSI_DATA)
if (m_rssiCount > 0U) {
uint16_t rssi = m_rssiAccum / m_rssiCount;
ldu[217U] = (rssi >> 8) & 0xFFU;
ldu[218U] = (rssi >> 0) & 0xFFU;
serial.writeP25Ldu(ldu, P25_LDU_FRAME_LENGTH_BYTES + 3U);
} else {
serial.writeP25Ldu(ldu, P25_LDU_FRAME_LENGTH_BYTES + 1U);
}
#else
serial.writeP25Ldu(ldu, P25_LDU_FRAME_LENGTH_BYTES + 1U);
#endif
m_rssiAccum = 0U;
m_rssiCount = 0U;
}

48
P25RX.h
View File

@ -1,5 +1,6 @@
/*
* Copyright (C) 2015,2016 by Jonathan Naylor G4KLX
* Copyright (C) 2015,2016,2017 by Jonathan Naylor G4KLX
* Copyright (C) 2018 by Bryan Biedenkapp <gatekeep@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -24,35 +25,50 @@
enum P25RX_STATE {
P25RXS_NONE,
P25RXS_DATA
P25RXS_HDR,
P25RXS_LDU
};
class CP25RX {
public:
CP25RX();
void samples(const q15_t* samples, uint8_t length);
void samples(const q15_t* samples, uint16_t* rssi, uint8_t length);
void reset();
private:
uint32_t m_pll;
bool m_prev;
P25RX_STATE m_state;
uint32_t m_symbolBuffer;
uint64_t m_bitBuffer;
q15_t m_symbols[P25_SYNC_LENGTH_SYMBOLS];
uint8_t m_outBuffer[P25_LDU_FRAME_LENGTH_BYTES + 3U];
uint8_t* m_buffer;
uint16_t m_bufferPtr;
uint16_t m_symbolPtr;
uint32_t m_bitBuffer[P25_RADIO_SYMBOL_LENGTH];
q15_t m_buffer[P25_LDU_FRAME_LENGTH_SAMPLES];
uint16_t m_bitPtr;
uint16_t m_dataPtr;
uint16_t m_hdrStartPtr;
uint16_t m_lduStartPtr;
uint16_t m_lduEndPtr;
uint16_t m_minSyncPtr;
uint16_t m_maxSyncPtr;
uint16_t m_hdrSyncPtr;
uint16_t m_lduSyncPtr;
q31_t m_maxCorr;
uint16_t m_lostCount;
q15_t m_centre;
q15_t m_threshold;
uint8_t m_countdown;
q15_t m_centre[16U];
q15_t m_centreVal;
q15_t m_threshold[16U];
q15_t m_thresholdVal;
uint8_t m_averagePtr;
uint32_t m_rssiAccum;
uint16_t m_rssiCount;
uint8_t m_duid;
void processNone(q15_t sample);
void processData(q15_t sample);
void processHdr(q15_t sample);
void processLdu(q15_t sample);
bool correlateSync();
void calculateLevels(uint16_t start, uint16_t count);
void samplesToBits(uint16_t start, uint16_t count, uint8_t* buffer, uint16_t offset, q15_t centre, q15_t threshold);
void writeRSSILdu(uint8_t* ldu);
};
#endif

101
P25TX.cpp
View File

@ -1,5 +1,6 @@
/*
* Copyright (C) 2016 by Jonathan Naylor G4KLX
* Copyright (C) 2016,2017 by Jonathan Naylor G4KLX
* Copyright (C) 2017 by Andy Uribe CA6JAU
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -16,37 +17,39 @@
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
// #define WANT_DEBUG
#include "Config.h"
#include "Globals.h"
#include "P25TX.h"
#include "P25Defines.h"
// Generated using rcosdesign(0.2, 4, 10, 'sqrt') in MATLAB
static q15_t P25_C4FSK_FILTER[] = {486, 39, -480, -1022, -1526, -1928, -2164, -2178, -1927, -1384, -548, 561, 1898, 3399, 4980, 6546, 7999, 9246, 10202, 10803, 11008, 10803, 10202, 9246,
7999, 6546, 4980, 3399, 1898, 561, -548, -1384, -1927, -2178, -2164, -1928, -1526, -1022, -480, 39, 486, 0};
const uint16_t P25_C4FSK_FILTER_LEN = 42U;
// Generated using rcosdesign(0.2, 8, 10, 'normal') in MATLAB
static q15_t RC_0_2_FILTER[] = {-444, -897, -1311, -1636, -1825, -1840, -1659, -1278, -712, 0,
800, 1613, 2354, 2936, 3277, 3310, 2994, 2315, 1296, 0, -1478,
-3011, -4448, -5627, -6386, -6580, -6090, -4839, -2800, 0, 3474,
7482, 11835, 16311, 20666, 24651, 28032, 30607, 32219, 32767,
32219, 30607, 28032, 24651, 20666, 16311, 11835, 7482, 3474, 0,
-2800, -4839, -6090, -6580, -6386, -5627, -4448, -3011, -1478,
0, 1296, 2315, 2994, 3310, 3277, 2936, 2354, 1613, 800, 0, -712,
-1278, -1659, -1840, -1825, -1636, -1311, -897, -444, 0}; // numTaps = 80, L = 10
const uint16_t RC_0_2_FILTER_PHASE_LEN = 8U; // phaseLength = numTaps/L
// Generated in MATLAB using the following commands, and then normalised for unity gain
// shape2 = 'Inverse-sinc Lowpass';
// d2 = fdesign.interpolator(2, shape2);
// d2 = fdesign.interpolator(1, shape2);
// h2 = design(d2, 'SystemObject', true);
static q15_t P25_LP_FILTER[] = {170, 401, 340, -203, -715, -478, 281, 419, -440, -1002, -103, 1114, 528, -1389, -1520, 1108, 2674, -388, -4662,
-2132, 9168, 20241, 20241, 9168, -2132, -4662, -388, 2674, 1108, -1520, -1389, 528, 1114, -103, -1002, -440, 419,
281, -478, -715, -203, 340, 401, 170};
const uint16_t P25_LP_FILTER_LEN = 44U;
static q15_t LOWPASS_FILTER[] = {1294, -2251, 4312, -8402, 20999, 20999, -8402, 4312, -2251, 1294};
const uint16_t LOWPASS_FILTER_LEN = 10U;
const q15_t P25_LEVELA[] = { 305, 305, 305, 305, 305, 305, 305, 305, 305, 305};
const q15_t P25_LEVELB[] = { 102, 102, 102, 102, 102, 102, 102, 102, 102, 102};
const q15_t P25_LEVELC[] = {-102, -102, -102, -102, -102, -102, -102, -102, -102, -102};
const q15_t P25_LEVELD[] = {-305, -305, -305, -305, -305, -305, -305, -305, -305, -305};
const q15_t P25_LEVELA = 1260;
const q15_t P25_LEVELB = 420;
const q15_t P25_LEVELC = -420;
const q15_t P25_LEVELD = -1260;
const uint8_t P25_START_SYNC = 0x77U;
CP25TX::CP25TX() :
m_buffer(1500U),
m_buffer(4000U),
m_modFilter(),
m_lpFilter(),
m_modState(),
@ -54,19 +57,19 @@ m_lpState(),
m_poBuffer(),
m_poLen(0U),
m_poPtr(0U),
m_txDelay(240U), // 200ms
m_count(0U)
m_txDelay(240U) // 200ms
{
::memset(m_modState, 0x00U, 90U * sizeof(q15_t));
::memset(m_lpState, 0x00U, 90U * sizeof(q15_t));
::memset(m_modState, 0x00U, 16U * sizeof(q15_t));
::memset(m_lpState, 0x00U, 60U * sizeof(q15_t));
m_modFilter.numTaps = P25_C4FSK_FILTER_LEN;
m_modFilter.L = P25_RADIO_SYMBOL_LENGTH;
m_modFilter.phaseLength = RC_0_2_FILTER_PHASE_LEN;
m_modFilter.pCoeffs = RC_0_2_FILTER;
m_modFilter.pState = m_modState;
m_modFilter.pCoeffs = P25_C4FSK_FILTER;
m_lpFilter.numTaps = P25_LP_FILTER_LEN;
m_lpFilter.numTaps = LOWPASS_FILTER_LEN;
m_lpFilter.pState = m_lpState;
m_lpFilter.pCoeffs = P25_LP_FILTER;
m_lpFilter.pCoeffs = LOWPASS_FILTER;
}
void CP25TX::process()
@ -76,8 +79,6 @@ void CP25TX::process()
if (m_poLen == 0U) {
if (!m_tx) {
m_count = 0U;
for (uint16_t i = 0U; i < m_txDelay; i++)
m_poBuffer[m_poLen++] = P25_START_SYNC;
} else {
@ -127,61 +128,45 @@ uint8_t CP25TX::writeData(const uint8_t* data, uint8_t length)
void CP25TX::writeByte(uint8_t c)
{
q15_t inBuffer[P25_RADIO_SYMBOL_LENGTH * 4U + 1U];
q15_t intBuffer[P25_RADIO_SYMBOL_LENGTH * 4U + 1U];
q15_t outBuffer[P25_RADIO_SYMBOL_LENGTH * 4U + 1U];
q15_t inBuffer[4U];
q15_t intBuffer[P25_RADIO_SYMBOL_LENGTH * 4U];
q15_t outBuffer[P25_RADIO_SYMBOL_LENGTH * 4U];
const uint8_t MASK = 0xC0U;
q15_t* p = inBuffer;
for (uint8_t i = 0U; i < 4U; i++, c <<= 2, p += P25_RADIO_SYMBOL_LENGTH) {
for (uint8_t i = 0U; i < 4U; i++, c <<= 2) {
switch (c & MASK) {
case 0xC0U:
::memcpy(p, P25_LEVELA, P25_RADIO_SYMBOL_LENGTH * sizeof(q15_t));
inBuffer[i] = P25_LEVELA;
break;
case 0x80U:
::memcpy(p, P25_LEVELB, P25_RADIO_SYMBOL_LENGTH * sizeof(q15_t));
inBuffer[i] = P25_LEVELB;
break;
case 0x00U:
::memcpy(p, P25_LEVELC, P25_RADIO_SYMBOL_LENGTH * sizeof(q15_t));
inBuffer[i] = P25_LEVELC;
break;
default:
::memcpy(p, P25_LEVELD, P25_RADIO_SYMBOL_LENGTH * sizeof(q15_t));
inBuffer[i] = P25_LEVELD;
break;
}
}
uint16_t blockSize = P25_RADIO_SYMBOL_LENGTH * 4U;
::arm_fir_interpolate_q15(&m_modFilter, inBuffer, intBuffer, 4U);
// Handle the case of the oscillator not being accurate enough
if (m_sampleCount > 0U) {
m_count += P25_RADIO_SYMBOL_LENGTH * 4U;
::arm_fir_fast_q15(&m_lpFilter, intBuffer, outBuffer, P25_RADIO_SYMBOL_LENGTH * 4U);
if (m_count >= m_sampleCount) {
if (m_sampleInsert) {
inBuffer[P25_RADIO_SYMBOL_LENGTH * 4U] = inBuffer[P25_RADIO_SYMBOL_LENGTH * 4U - 1U];
blockSize++;
} else {
blockSize--;
}
m_count -= m_sampleCount;
}
}
::arm_fir_fast_q15(&m_modFilter, inBuffer, intBuffer, blockSize);
::arm_fir_fast_q15(&m_lpFilter, intBuffer, outBuffer, blockSize);
io.write(STATE_P25, outBuffer, blockSize);
io.write(STATE_P25, outBuffer, P25_RADIO_SYMBOL_LENGTH * 4U);
}
void CP25TX::setTXDelay(uint8_t delay)
{
m_txDelay = 600U + uint16_t(delay) * 12U; // 500ms + tx delay
if (m_txDelay > 1200U)
m_txDelay = 1200U;
}
uint16_t CP25TX::getSpace() const
uint8_t CP25TX::getSpace() const
{
return m_buffer.getSpace() / P25_LDU_FRAME_LENGTH_BYTES;
}

13
P25TX.h
View File

@ -1,5 +1,5 @@
/*
* Copyright (C) 2016 by Jonathan Naylor G4KLX
* Copyright (C) 2016,2017 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -33,19 +33,18 @@ public:
void setTXDelay(uint8_t delay);
uint16_t getSpace() const;
uint8_t getSpace() const;
private:
CSerialRB m_buffer;
arm_fir_instance_q15 m_modFilter;
arm_fir_interpolate_instance_q15 m_modFilter;
arm_fir_instance_q15 m_lpFilter;
q15_t m_modState[90U]; // NoTaps + BlockSize - 1, 42 + 20 - 1 plus some spare
q15_t m_lpState[90U]; // NoTaps + BlockSize - 1, 44 + 20 - 1 plus some spare
uint8_t m_poBuffer[920U];
q15_t m_modState[16U]; // blockSize + phaseLength - 1, 4 + 9 - 1 plus some spare
q15_t m_lpState[60U]; // NoTaps + BlockSize - 1, 32 + 20 - 1 plus some spare
uint8_t m_poBuffer[1200U];
uint16_t m_poLen;
uint16_t m_poPtr;
uint16_t m_txDelay;
uint32_t m_count;
void writeByte(uint8_t c);
};

View File

@ -1,6 +1,6 @@
This is the source code of the MMDVM firmware that supports D-Star, DMR, System Fusion and P25.
This is the source code of the MMDVM firmware that supports D-Star, DMR, System Fusion, P25, and NXDN modes.
It runs on the Arduino Due and the ST-Micro STM32F4xx platforms. Support for the Teensy (3.1/3.2 and 3.5/3.6) is being added.
It runs on the Arduino Due, the ST-Micro STM32F407-DISCO and STM32F446-NUCLEO, as well as the Teensy 3.1/3.2/3.5/3.6. What these platforms have in common is the use of an ARM Cortex-M3 or M4 processor with a clock speed greater than 70 MHz, and access to at least one analogue to digital converter and one digital to analogue converter. A Cortex-M7 processor is also probably adequate.
In order to build this software for the Arduino Due, you will need to edit a file within the Arduino GUI and that is detailed in the BUILD.txt file. The STM32 support is being supplied via the Coocox IDE with ARM GCC. The Teensy support is via the latest beta of Teensyduino.

View File

@ -22,7 +22,6 @@ Boston, MA 02110-1301, USA.
CRSSIRB::CRSSIRB(uint16_t length) :
m_length(length),
m_rssi(NULL),
m_head(0U),
m_tail(0U),
m_full(false),
@ -101,4 +100,3 @@ bool CRSSIRB::hasOverflowed()
return overflow;
}

View File

@ -21,8 +21,12 @@ Boston, MA 02110-1301, USA.
#if !defined(RSSIRB_H)
#define RSSIRB_H
#if defined(STM32F4XX) || defined(STM32F4)
#if defined(STM32F4XX)
#include "stm32f4xx.h"
#elif defined(STM32F7XX)
#include "stm32f7xx.h"
#elif defined(STM32F105xC)
#include "stm32f1xx.h"
#include <cstddef>
#else
#include <Arduino.h>

47
RingBuff.h Normal file
View File

@ -0,0 +1,47 @@
/*
* Copyright (C) 2017 Wojciech Krutnik N0CALL
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* FIFO ring buffer
* source:
* http://stackoverflow.com/questions/6822548/correct-way-of-implementing-a-uart-receive-buffer-in-a-small-arm-microcontroller
* (modified)
*
*/
#if !defined(RINGBUFF_H)
#define RINGBUFF_H
#define RINGBUFF_SIZE(ringBuff) (ringBuff.size) /* serial buffer in bytes (power 2) */
#define RINGBUFF_MASK(ringBuff) (ringBuff.size-1U) /* buffer size mask */
/* Buffer read / write macros */
#define RINGBUFF_RESET(ringBuff) (ringBuff).rdIdx = ringBuff.wrIdx = 0
#define RINGBUFF_WRITE(ringBuff, dataIn) (ringBuff).data[RINGBUFF_MASK(ringBuff) & ringBuff.wrIdx++] = (dataIn)
#define RINGBUFF_READ(ringBuff) ((ringBuff).data[RINGBUFF_MASK(ringBuff) & ((ringBuff).rdIdx++)])
#define RINGBUFF_EMPTY(ringBuff) ((ringBuff).rdIdx == (ringBuff).wrIdx)
#define RINGBUFF_FULL(ringBuff) ((RINGBUFF_MASK(ringBuff) & ringFifo.rdIdx) == (RINGBUFF_MASK(ringBuff) & ringFifo.wrIdx))
#define RINGBUFF_COUNT(ringBuff) (RINGBUFF_MASK(ringBuff) & ((ringBuff).wrIdx - (ringBuff).rdIdx))
/* Buffer type */
#define DECLARE_RINGBUFFER_TYPE(name, _size) \
typedef struct{ \
uint32_t size; \
uint32_t wrIdx; \
uint32_t rdIdx; \
uint8_t data[_size]; \
}name##_t
#endif

50
STM32Utils.h Normal file
View File

@ -0,0 +1,50 @@
/*
* source: http://mightydevices.com/?p=144
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#if !defined(STM32UTILS_H)
#define STM32UTILS_H
#include <stdint.h>
/* ram function */
#define RAMFUNC __attribute__ ((long_call, section (".data")))
/* eeprom data */
/* for placing variables in eeprom memory */
#define EEMEM __attribute__((section(".eeprom")))
/* bitband type */
typedef volatile uint32_t * const bitband_t;
/* base address for bit banding */
#define BITBAND_SRAM_REF (0x20000000)
/* base address for bit banding */
#define BITBAND_SRAM_BASE (0x22000000)
/* base address for bit banding */
#define BITBAND_PERIPH_REF (0x40000000)
/* base address for bit banding */
#define BITBAND_PERIPH_BASE (0x42000000)
/* sram bit band */
#define BITBAND_SRAM(address, bit) ((void*)(BITBAND_SRAM_BASE + \
(((uint32_t)address) - BITBAND_SRAM_REF) * 32 + (bit) * 4))
/* periph bit band */
#define BITBAND_PERIPH(address, bit) ((void *)(BITBAND_PERIPH_BASE + \
(((uint32_t)address) - BITBAND_PERIPH_REF) * 32 + (bit) * 4))
#endif

View File

@ -22,8 +22,6 @@ Boston, MA 02110-1301, USA.
CSampleRB::CSampleRB(uint16_t length) :
m_length(length),
m_samples(NULL),
m_control(NULL),
m_head(0U),
m_tail(0U),
m_full(false),

View File

@ -21,8 +21,12 @@ Boston, MA 02110-1301, USA.
#if !defined(SAMPLERB_H)
#define SAMPLERB_H
#if defined(STM32F4XX) || defined(STM32F4)
#if defined(STM32F4XX)
#include "stm32f4xx.h"
#elif defined(STM32F7XX)
#include "stm32f7xx.h"
#elif defined(STM32F105xC)
#include "stm32f1xx.h"
#include <cstddef>
#else
#include <Arduino.h>

View File

@ -1,5 +1,5 @@
/*
* Copyright (C) 2016 by Jonathan Naylor G4KLX
* Copyright (C) 2016,2017 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -54,6 +54,20 @@ int CSerialPort::availableInt(uint8_t n)
}
}
int CSerialPort::availableForWriteInt(uint8_t n)
{
switch (n) {
case 1U:
return Serial.availableForWrite();
case 2U:
return Serial2.availableForWrite();
case 3U:
return Serial3.availableForWrite();
default:
return false;
}
}
uint8_t CSerialPort::readInt(uint8_t n)
{
switch (n) {

View File

@ -1,5 +1,5 @@
/*
* Copyright (C) 2013,2015,2016 by Jonathan Naylor G4KLX
* Copyright (C) 2013,2015,2016,2017,2018 by Jonathan Naylor G4KLX
* Copyright (C) 2016 by Colin Durbridge G4EML
*
* This program is free software; you can redistribute it and/or modify
@ -17,11 +17,14 @@
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
// #define WANT_DEBUG
#include "Config.h"
#include "Globals.h"
#if defined(MADEBYMAKEFILE)
#include "GitVersion.h"
#endif
#include "SerialPort.h"
const uint8_t MMDVM_FRAME_START = 0xE0U;
@ -33,6 +36,7 @@ const uint8_t MMDVM_SET_MODE = 0x03U;
const uint8_t MMDVM_SET_FREQ = 0x04U;
const uint8_t MMDVM_CAL_DATA = 0x08U;
const uint8_t MMDVM_RSSI_DATA = 0x09U;
const uint8_t MMDVM_SEND_CWID = 0x0AU;
@ -56,21 +60,35 @@ const uint8_t MMDVM_P25_HDR = 0x30U;
const uint8_t MMDVM_P25_LDU = 0x31U;
const uint8_t MMDVM_P25_LOST = 0x32U;
const uint8_t MMDVM_NXDN_DATA = 0x40U;
const uint8_t MMDVM_NXDN_LOST = 0x41U;
const uint8_t MMDVM_ACK = 0x70U;
const uint8_t MMDVM_NAK = 0x7FU;
const uint8_t MMDVM_SERIAL = 0x80U;
const uint8_t MMDVM_TRANSPARENT = 0x90U;
const uint8_t MMDVM_DEBUG1 = 0xF1U;
const uint8_t MMDVM_DEBUG2 = 0xF2U;
const uint8_t MMDVM_DEBUG3 = 0xF3U;
const uint8_t MMDVM_DEBUG4 = 0xF4U;
const uint8_t MMDVM_DEBUG5 = 0xF5U;
#if defined(EXTERNAL_OSC)
const uint8_t HARDWARE[] = "MMDVM 20161124 TCXO 48kHz (D-Star/DMR/System Fusion/P25/CW Id)";
#define DESCRIPTION "MMDVM 20180517 TCXO 48Khz (D-Star/DMR/System Fusion/P25/NXDN)"
#else
const uint8_t HARDWARE[] = "MMDVM 20161124 48kHz (D-Star/DMR/System Fusion/P25/CW Id)";
#define DESCRIPTION "MMDVM 20180517 48Khz (D-Star/DMR/System Fusion/P25/NXDN)"
#endif
#if defined(GITVERSION)
#define concat(a, b) a " GitID #" b ""
const char HARDWARE[] = concat(DESCRIPTION, GITVERSION);
#else
#define concat(a, b, c) a " (Build: " b " " c ")"
const char HARDWARE[] = concat(DESCRIPTION, __TIME__, __DATE__);
#endif
const uint8_t PROTOCOL_VERSION = 1U;
@ -79,7 +97,9 @@ const uint8_t PROTOCOL_VERSION = 1U;
CSerialPort::CSerialPort() :
m_buffer(),
m_ptr(0U),
m_len(0U)
m_len(0U),
m_debug(false),
m_repeat()
{
}
@ -128,6 +148,8 @@ void CSerialPort::getStatus()
reply[3U] |= 0x04U;
if (m_p25Enable)
reply[3U] |= 0x08U;
if (m_nxdnEnable)
reply[3U] |= 0x10U;
reply[4U] = uint8_t(m_modemState);
@ -182,7 +204,12 @@ void CSerialPort::getStatus()
else
reply[10U] = 0U;
writeInt(1U, reply, 11);
if (m_nxdnEnable)
reply[11U] = nxdnTX.getSpace();
else
reply[11U] = 0U;
writeInt(1U, reply, 12);
}
void CSerialPort::getVersion()
@ -206,18 +233,22 @@ void CSerialPort::getVersion()
uint8_t CSerialPort::setConfig(const uint8_t* data, uint8_t length)
{
if (length < 13U)
if (length < 16U)
return 4U;
bool rxInvert = (data[0U] & 0x01U) == 0x01U;
bool txInvert = (data[0U] & 0x02U) == 0x02U;
bool pttInvert = (data[0U] & 0x04U) == 0x04U;
bool ysfLoDev = (data[0U] & 0x08U) == 0x08U;
bool simplex = (data[0U] & 0x80U) == 0x80U;
m_debug = (data[0U] & 0x10U) == 0x10U;
bool dstarEnable = (data[1U] & 0x01U) == 0x01U;
bool dmrEnable = (data[1U] & 0x02U) == 0x02U;
bool ysfEnable = (data[1U] & 0x04U) == 0x04U;
bool p25Enable = (data[1U] & 0x08U) == 0x08U;
bool nxdnEnable = (data[1U] & 0x10U) == 0x10U;
uint8_t txDelay = data[2U];
if (txDelay > 50U)
@ -225,7 +256,7 @@ uint8_t CSerialPort::setConfig(const uint8_t* data, uint8_t length)
MMDVM_STATE modemState = MMDVM_STATE(data[3U]);
if (modemState != STATE_IDLE && modemState != STATE_DSTAR && modemState != STATE_DMR && modemState != STATE_YSF && modemState != STATE_P25 && modemState != STATE_DSTARCAL && modemState != STATE_DMRCAL)
if (modemState != STATE_IDLE && modemState != STATE_DSTAR && modemState != STATE_DMR && modemState != STATE_YSF && modemState != STATE_P25 && modemState != STATE_NXDN && modemState != STATE_DSTARCAL && modemState != STATE_DMRCAL && modemState != STATE_RSSICAL && modemState != STATE_LFCAL && modemState != STATE_DMRCAL1K && modemState != STATE_P25CAL1K && modemState != STATE_DMRDMO1K && modemState != STATE_NXDNCAL1K)
return 4U;
if (modemState == STATE_DSTAR && !dstarEnable)
return 4U;
@ -235,6 +266,8 @@ uint8_t CSerialPort::setConfig(const uint8_t* data, uint8_t length)
return 4U;
if (modemState == STATE_P25 && !p25Enable)
return 4U;
if (modemState == STATE_NXDN && !nxdnEnable)
return 4U;
uint8_t rxLevel = data[4U];
@ -244,36 +277,31 @@ uint8_t CSerialPort::setConfig(const uint8_t* data, uint8_t length)
uint8_t dmrDelay = data[7U];
int8_t oscOffset = int8_t(data[8U]) - 128;
if (oscOffset < 0) {
m_sampleCount = 1000000U / uint32_t(-oscOffset);
m_sampleInsert = false;
} else if (oscOffset > 0) {
m_sampleCount = 1000000U / uint32_t(oscOffset);
m_sampleInsert = true;
} else {
m_sampleCount = 0U;
m_sampleInsert = false;
}
uint8_t cwIdTXLevel = data[5U];
uint8_t dstarTXLevel = data[9U];
uint8_t dmrTXLevel = data[10U];
uint8_t ysfTXLevel = data[11U];
uint8_t p25TXLevel = data[12U];
int16_t txDCOffset = int16_t(data[13U]) - 128;
int16_t rxDCOffset = int16_t(data[14U]) - 128;
uint8_t nxdnTXLevel = data[15U];
m_modemState = modemState;
m_dstarEnable = dstarEnable;
m_dmrEnable = dmrEnable;
m_ysfEnable = ysfEnable;
m_p25Enable = p25Enable;
m_nxdnEnable = nxdnEnable;
m_duplex = !simplex;
dstarTX.setTXDelay(txDelay);
ysfTX.setTXDelay(txDelay);
p25TX.setTXDelay(txDelay);
dmrDMOTX.setTXDelay(txDelay);
nxdnTX.setTXDelay(txDelay);
dmrTX.setColorCode(colorCode);
dmrRX.setColorCode(colorCode);
@ -281,7 +309,9 @@ uint8_t CSerialPort::setConfig(const uint8_t* data, uint8_t length)
dmrDMORX.setColorCode(colorCode);
dmrIdleRX.setColorCode(colorCode);
io.setParameters(rxInvert, txInvert, pttInvert, rxLevel, cwIdTXLevel, dstarTXLevel, dmrTXLevel, ysfTXLevel, p25TXLevel);
ysfTX.setLoDev(ysfLoDev);
io.setParameters(rxInvert, txInvert, pttInvert, rxLevel, cwIdTXLevel, dstarTXLevel, dmrTXLevel, ysfTXLevel, p25TXLevel, nxdnTXLevel, txDCOffset, rxDCOffset);
io.start();
@ -298,7 +328,7 @@ uint8_t CSerialPort::setMode(const uint8_t* data, uint8_t length)
if (modemState == m_modemState)
return 0U;
if (modemState != STATE_IDLE && modemState != STATE_DSTAR && modemState != STATE_DMR && modemState != STATE_YSF && modemState != STATE_P25 && modemState != STATE_DSTARCAL && modemState != STATE_DMRCAL)
if (modemState != STATE_IDLE && modemState != STATE_DSTAR && modemState != STATE_DMR && modemState != STATE_YSF && modemState != STATE_P25 && modemState != STATE_NXDN && modemState != STATE_DSTARCAL && modemState != STATE_DMRCAL && modemState != STATE_RSSICAL && modemState != STATE_LFCAL && modemState != STATE_DMRCAL1K && modemState != STATE_P25CAL1K && modemState != STATE_DMRDMO1K && modemState != STATE_NXDNCAL1K)
return 4U;
if (modemState == STATE_DSTAR && !m_dstarEnable)
return 4U;
@ -308,6 +338,8 @@ uint8_t CSerialPort::setMode(const uint8_t* data, uint8_t length)
return 4U;
if (modemState == STATE_P25 && !m_p25Enable)
return 4U;
if (modemState == STATE_NXDN && !m_nxdnEnable)
return 4U;
setMode(modemState);
@ -322,6 +354,7 @@ void CSerialPort::setMode(MMDVM_STATE modemState)
dstarRX.reset();
ysfRX.reset();
p25RX.reset();
nxdnRX.reset();
cwIdTX.reset();
break;
case STATE_DSTAR:
@ -331,6 +364,7 @@ void CSerialPort::setMode(MMDVM_STATE modemState)
dmrRX.reset();
ysfRX.reset();
p25RX.reset();
nxdnRX.reset();
cwIdTX.reset();
break;
case STATE_YSF:
@ -340,6 +374,7 @@ void CSerialPort::setMode(MMDVM_STATE modemState)
dmrRX.reset();
dstarRX.reset();
p25RX.reset();
nxdnRX.reset();
cwIdTX.reset();
break;
case STATE_P25:
@ -349,6 +384,17 @@ void CSerialPort::setMode(MMDVM_STATE modemState)
dmrRX.reset();
dstarRX.reset();
ysfRX.reset();
nxdnRX.reset();
cwIdTX.reset();
break;
case STATE_NXDN:
DEBUG1("Mode set to NXDN");
dmrIdleRX.reset();
dmrDMORX.reset();
dmrRX.reset();
dstarRX.reset();
ysfRX.reset();
p25RX.reset();
cwIdTX.reset();
break;
case STATE_DSTARCAL:
@ -359,6 +405,7 @@ void CSerialPort::setMode(MMDVM_STATE modemState)
dstarRX.reset();
ysfRX.reset();
p25RX.reset();
nxdnRX.reset();
cwIdTX.reset();
break;
case STATE_DMRCAL:
@ -369,6 +416,73 @@ void CSerialPort::setMode(MMDVM_STATE modemState)
dstarRX.reset();
ysfRX.reset();
p25RX.reset();
nxdnRX.reset();
cwIdTX.reset();
break;
case STATE_RSSICAL:
DEBUG1("Mode set to RSSI Calibrate");
dmrIdleRX.reset();
dmrDMORX.reset();
dmrRX.reset();
dstarRX.reset();
ysfRX.reset();
p25RX.reset();
nxdnRX.reset();
cwIdTX.reset();
break;
case STATE_LFCAL:
DEBUG1("Mode set to 80 Hz Calibrate");
dmrIdleRX.reset();
dmrDMORX.reset();
dmrRX.reset();
dstarRX.reset();
ysfRX.reset();
p25RX.reset();
nxdnRX.reset();
cwIdTX.reset();
break;
case STATE_DMRCAL1K:
DEBUG1("Mode set to DMR BS 1031 Hz Calibrate");
dmrIdleRX.reset();
dmrDMORX.reset();
dmrRX.reset();
dstarRX.reset();
ysfRX.reset();
p25RX.reset();
nxdnRX.reset();
cwIdTX.reset();
break;
case STATE_P25CAL1K:
DEBUG1("Mode set to P25 1011 Hz Calibrate");
dmrIdleRX.reset();
dmrDMORX.reset();
dmrRX.reset();
dstarRX.reset();
ysfRX.reset();
p25RX.reset();
nxdnRX.reset();
cwIdTX.reset();
break;
case STATE_DMRDMO1K:
DEBUG1("Mode set to DMR MS 1031 Hz Calibrate");
dmrIdleRX.reset();
dmrDMORX.reset();
dmrRX.reset();
dstarRX.reset();
ysfRX.reset();
p25RX.reset();
nxdnRX.reset();
cwIdTX.reset();
break;
case STATE_NXDNCAL1K:
DEBUG1("Mode set to NXDN 1031 Hz Calibrate");
dmrIdleRX.reset();
dmrDMORX.reset();
dmrRX.reset();
dstarRX.reset();
ysfRX.reset();
p25RX.reset();
nxdnRX.reset();
cwIdTX.reset();
break;
default:
@ -403,6 +517,10 @@ void CSerialPort::process()
m_ptr = 1U;
m_len = 0U;
}
else {
m_ptr = 0U;
m_len = 0U;
}
} else if (m_ptr == 1U) {
// Handle the frame length
m_len = m_buffer[m_ptr] = c;
@ -448,8 +566,12 @@ void CSerialPort::process()
case MMDVM_CAL_DATA:
if (m_modemState == STATE_DSTARCAL)
err = calDStarTX.write(m_buffer + 3U, m_len - 3U);
if (m_modemState == STATE_DMRCAL)
if (m_modemState == STATE_DMRCAL || m_modemState == STATE_LFCAL || m_modemState == STATE_DMRCAL1K || m_modemState == STATE_DMRDMO1K)
err = calDMR.write(m_buffer + 3U, m_len - 3U);
if (m_modemState == STATE_P25CAL1K)
err = calP25.write(m_buffer + 3U, m_len - 3U);
if (m_modemState == STATE_NXDNCAL1K)
err = calNXDN.write(m_buffer + 3U, m_len - 3U);
if (err == 0U) {
sendACK();
} else {
@ -625,9 +747,29 @@ void CSerialPort::process()
}
break;
case MMDVM_NXDN_DATA:
if (m_nxdnEnable) {
if (m_modemState == STATE_IDLE || m_modemState == STATE_NXDN)
err = nxdnTX.writeData(m_buffer + 3U, m_len - 3U);
}
if (err == 0U) {
if (m_modemState == STATE_IDLE)
setMode(STATE_NXDN);
} else {
DEBUG2("Received invalid NXDN data", err);
sendNAK(err);
}
break;
case MMDVM_TRANSPARENT:
// Do nothing on the MMDVM.
break;
#if defined(SERIAL_REPEATER)
case MMDVM_SERIAL:
writeInt(3U, m_buffer + 3U, m_len - 3U);
case MMDVM_SERIAL: {
for (uint8_t i = 3U; i < m_len; i++)
m_repeat.put(m_buffer[i]);
}
break;
#endif
@ -643,8 +785,26 @@ void CSerialPort::process()
}
}
if (io.getWatchdog() >= 96000U) {
m_ptr = 0U;
m_len = 0U;
}
#if defined(SERIAL_REPEATER)
// Drain any incoming serial data
// Write any outgoing serial data
uint16_t space = m_repeat.getData();
if (space > 0U) {
int avail = availableForWriteInt(3U);
if (avail < space)
space = avail;
for (uint16_t i = 0U; i < space; i++) {
uint8_t c = m_repeat.get();
writeInt(3U, &c, 1U);
}
}
// Read any incoming serial data
while (availableInt(3U))
readInt(3U);
#endif
@ -872,6 +1032,46 @@ void CSerialPort::writeP25Lost()
writeInt(1U, reply, 3);
}
void CSerialPort::writeNXDNData(const uint8_t* data, uint8_t length)
{
if (m_modemState != STATE_NXDN && m_modemState != STATE_IDLE)
return;
if (!m_nxdnEnable)
return;
uint8_t reply[130U];
reply[0U] = MMDVM_FRAME_START;
reply[1U] = 0U;
reply[2U] = MMDVM_NXDN_DATA;
uint8_t count = 3U;
for (uint8_t i = 0U; i < length; i++, count++)
reply[count] = data[i];
reply[1U] = count;
writeInt(1U, reply, count);
}
void CSerialPort::writeNXDNLost()
{
if (m_modemState != STATE_NXDN && m_modemState != STATE_IDLE)
return;
if (!m_nxdnEnable)
return;
uint8_t reply[3U];
reply[0U] = MMDVM_FRAME_START;
reply[1U] = 3U;
reply[2U] = MMDVM_NXDN_LOST;
writeInt(1U, reply, 3);
}
void CSerialPort::writeCalData(const uint8_t* data, uint8_t length)
{
if (m_modemState != STATE_DSTARCAL)
@ -892,8 +1092,31 @@ void CSerialPort::writeCalData(const uint8_t* data, uint8_t length)
writeInt(1U, reply, count);
}
void CSerialPort::writeRSSIData(const uint8_t* data, uint8_t length)
{
if (m_modemState != STATE_RSSICAL)
return;
uint8_t reply[30U];
reply[0U] = MMDVM_FRAME_START;
reply[1U] = 0U;
reply[2U] = MMDVM_RSSI_DATA;
uint8_t count = 3U;
for (uint8_t i = 0U; i < length; i++, count++)
reply[count] = data[i];
reply[1U] = count;
writeInt(1U, reply, count);
}
void CSerialPort::writeDebug(const char* text)
{
if (!m_debug)
return;
uint8_t reply[130U];
reply[0U] = MMDVM_FRAME_START;
@ -911,6 +1134,9 @@ void CSerialPort::writeDebug(const char* text)
void CSerialPort::writeDebug(const char* text, int16_t n1)
{
if (!m_debug)
return;
uint8_t reply[130U];
reply[0U] = MMDVM_FRAME_START;
@ -931,6 +1157,9 @@ void CSerialPort::writeDebug(const char* text, int16_t n1)
void CSerialPort::writeDebug(const char* text, int16_t n1, int16_t n2)
{
if (!m_debug)
return;
uint8_t reply[130U];
reply[0U] = MMDVM_FRAME_START;
@ -954,6 +1183,9 @@ void CSerialPort::writeDebug(const char* text, int16_t n1, int16_t n2)
void CSerialPort::writeDebug(const char* text, int16_t n1, int16_t n2, int16_t n3)
{
if (!m_debug)
return;
uint8_t reply[130U];
reply[0U] = MMDVM_FRAME_START;
@ -980,6 +1212,9 @@ void CSerialPort::writeDebug(const char* text, int16_t n1, int16_t n2, int16_t n
void CSerialPort::writeDebug(const char* text, int16_t n1, int16_t n2, int16_t n3, int16_t n4)
{
if (!m_debug)
return;
uint8_t reply[130U];
reply[0U] = MMDVM_FRAME_START;
@ -1006,32 +1241,3 @@ void CSerialPort::writeDebug(const char* text, int16_t n1, int16_t n2, int16_t n
writeInt(1U, reply, count, true);
}
void CSerialPort::writeAssert(bool cond, const char* text, const char* file, long line)
{
if (cond)
return;
uint8_t reply[200U];
reply[0U] = MMDVM_FRAME_START;
reply[1U] = 0U;
reply[2U] = MMDVM_DEBUG2;
uint8_t count = 3U;
for (uint8_t i = 0U; text[i] != '\0'; i++, count++)
reply[count] = text[i];
reply[count++] = ' ';
for (uint8_t i = 0U; file[i] != '\0'; i++, count++)
reply[count] = file[i];
reply[count++] = (line >> 8) & 0xFF;
reply[count++] = (line >> 0) & 0xFF;
reply[1U] = count;
writeInt(1U, reply, count, true);
}

View File

@ -1,5 +1,5 @@
/*
* Copyright (C) 2015,2016 by Jonathan Naylor G4KLX
* Copyright (C) 2015,2016,2017,2018 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -21,6 +21,7 @@
#include "Config.h"
#include "Globals.h"
#include "SerialRB.h"
class CSerialPort {
@ -46,7 +47,11 @@ public:
void writeP25Ldu(const uint8_t* data, uint8_t length);
void writeP25Lost();
void writeNXDNData(const uint8_t* data, uint8_t length);
void writeNXDNLost();
void writeCalData(const uint8_t* data, uint8_t length);
void writeRSSIData(const uint8_t* data, uint8_t length);
void writeDebug(const char* text);
void writeDebug(const char* text, int16_t n1);
@ -54,12 +59,12 @@ public:
void writeDebug(const char* text, int16_t n1, int16_t n2, int16_t n3);
void writeDebug(const char* text, int16_t n1, int16_t n2, int16_t n3, int16_t n4);
void writeAssert(bool cond, const char* text, const char* file, long line);
private:
uint8_t m_buffer[256U];
uint8_t m_ptr;
uint8_t m_len;
bool m_debug;
CSerialRB m_repeat;
void sendACK();
void sendNAK(uint8_t err);
@ -72,6 +77,7 @@ private:
// Hardware versions
void beginInt(uint8_t n, int speed);
int availableInt(uint8_t n);
int availableForWriteInt(uint8_t n);
uint8_t readInt(uint8_t n);
void writeInt(uint8_t n, const uint8_t* data, uint16_t length, bool flush = false);
};

View File

@ -22,7 +22,6 @@ Boston, MA 02110-1301, USA.
CSerialRB::CSerialRB(uint16_t length) :
m_length(length),
m_buffer(NULL),
m_head(0U),
m_tail(0U),
m_full(false)

View File

@ -21,14 +21,18 @@ Boston, MA 02110-1301, USA.
#if !defined(SERIALRB_H)
#define SERIALRB_H
#if defined(STM32F4XX) || defined(STM32F4)
#if defined(STM32F4XX)
#include "stm32f4xx.h"
#elif defined(STM32F7XX)
#include "stm32f7xx.h"
#elif defined(STM32F105xC)
#include "stm32f1xx.h"
#include <cstddef>
#else
#include <Arduino.h>
#endif
const uint16_t SERIAL_RINGBUFFER_SIZE = 370U;
const uint16_t SERIAL_RINGBUFFER_SIZE = 2000U;
class CSerialRB {
public:

View File

@ -1,6 +1,7 @@
/*
* Copyright (C) 2016 by Jim McLaughlin KI6ZUM
* Copyright (C) 2016 by Andy Uribe CA6JAU
* Copyright (C) 2016,2017,2018 by Andy Uribe CA6JAU
* Copyright (c) 2017 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -26,19 +27,20 @@
Pin definitions:
- Host communication:
USART1 - TXD PA9 - RXD PA10 (Pi board)
USART2 - TXD PA2 - RXD PA3 (Nucleo board)
USART1 - TXD PA9 - RXD PA10 (MMDVM-Pi board, MMDVM-Pi F722 board, MMDVM-F4M board, STM32F722-F7M board, STM32F4-DVM board)
USART2 - TXD PA2 - RXD PA3 (Nucleo64 F446RE board, Morpho or Arduino header)
USART3 - TXD PC10 - RXD PC11 (Discovery board)
USART3 - TXD PD8 - RXD PD9 (Nucleo144 F767ZI board)
- Serial repeater:
UART5 - TXD PC12 - RXD PD2
USART1 - TXD PA9 - RXD PA10 (Nucleo with Arduino header)
UART5 - TXD PC12 - RXD PD2 (Discovery, MMDVM-Pi, MMDVM-Pi F722 board, MMDVM-F4M board, STM32F722-F7M board, STM32F4-DVM board, Nucleo64 with Morpho header and Nucleo144 F767ZI)
*/
#if defined(STM32F4XX) || defined(STM32F4)
#if defined(STM32F4XX) || defined(STM32F7XX)
#define TX_SERIAL_FIFO_SIZE 256U
#define RX_SERIAL_FIFO_SIZE 256U
#define TX_SERIAL_FIFO_SIZE 512U
#define RX_SERIAL_FIFO_SIZE 512U
extern "C" {
void USART1_IRQHandler();
@ -48,9 +50,8 @@ extern "C" {
}
/* ************* USART1 ***************** */
#if defined(STM32F4_PI)
#if defined(STM32F4_PI) || defined(STM32F4_F4M) || defined(STM32F722_F7M) || defined(STM32F722_PI) || defined(STM32F4_DVM) || (defined(STM32F4_NUCLEO) && defined(STM32F4_NUCLEO_ARDUINO_HEADER))
volatile uint32_t intcount1;
volatile uint8_t TXSerialfifo1[TX_SERIAL_FIFO_SIZE];
volatile uint8_t RXSerialfifo1[RX_SERIAL_FIFO_SIZE];
volatile uint16_t TXSerialfifohead1, TXSerialfifotail1;
@ -137,7 +138,6 @@ void USART1_IRQHandler()
}
USART_ClearITPendingBit(USART1, USART_IT_RXNE);
intcount1++;
}
if (USART_GetITStatus(USART1, USART_IT_TXE)) {
@ -184,7 +184,7 @@ void InitUSART1(int speed)
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9 | GPIO_Pin_10; // Tx | Rx
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Speed = GPIO_Fast_Speed;
GPIO_Init(GPIOA, &GPIO_InitStructure);
// Configure USART baud rate
@ -206,7 +206,7 @@ void InitUSART1(int speed)
RXSerialfifoinit1();
}
uint8_t AvailUSART1(void)
uint8_t AvailUSART1()
{
if (RXSerialfifolevel1() > 0U)
return 1U;
@ -214,7 +214,12 @@ uint8_t AvailUSART1(void)
return 0U;
}
uint8_t ReadUSART1(void)
int AvailForWriteUSART1()
{
return TX_SERIAL_FIFO_SIZE - TXSerialfifolevel1();
}
uint8_t ReadUSART1()
{
uint8_t data_c = RXSerialfifo1[RXSerialfifotail1];
@ -238,7 +243,6 @@ void WriteUSART1(const uint8_t* data, uint16_t length)
/* ************* USART2 ***************** */
#if defined(STM32F4_NUCLEO)
volatile uint32_t intcount2;
volatile uint8_t TXSerialfifo2[TX_SERIAL_FIFO_SIZE];
volatile uint8_t RXSerialfifo2[RX_SERIAL_FIFO_SIZE];
volatile uint16_t TXSerialfifohead2, TXSerialfifotail2;
@ -325,7 +329,6 @@ void USART2_IRQHandler()
}
USART_ClearITPendingBit(USART2, USART_IT_RXNE);
intcount2++;
}
if (USART_GetITStatus(USART2, USART_IT_TXE)) {
@ -372,7 +375,7 @@ void InitUSART2(int speed)
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2 | GPIO_Pin_3; // Tx | Rx
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Speed = GPIO_Fast_Speed;
GPIO_Init(GPIOA, &GPIO_InitStructure);
// Configure USART baud rate
@ -394,7 +397,7 @@ void InitUSART2(int speed)
RXSerialfifoinit2();
}
uint8_t AvailUSART2(void)
uint8_t AvailUSART2()
{
if (RXSerialfifolevel2() > 0U)
return 1U;
@ -402,7 +405,12 @@ uint8_t AvailUSART2(void)
return 0U;
}
uint8_t ReadUSART2(void)
int AvailForWriteUSART2()
{
return TX_SERIAL_FIFO_SIZE - TXSerialfifolevel2();
}
uint8_t ReadUSART2()
{
uint8_t data_c = RXSerialfifo2[RXSerialfifotail2];
@ -424,9 +432,8 @@ void WriteUSART2(const uint8_t* data, uint16_t length)
#endif
/* ************* USART3 ***************** */
#if defined(STM32F4_DISCOVERY) || defined(STM32F4_PI)
#if defined(STM32F4_DISCOVERY) || defined(STM32F7_NUCLEO)
volatile uint32_t intcount3;
volatile uint8_t TXSerialfifo3[TX_SERIAL_FIFO_SIZE];
volatile uint8_t RXSerialfifo3[RX_SERIAL_FIFO_SIZE];
volatile uint16_t TXSerialfifohead3, TXSerialfifotail3;
@ -513,7 +520,6 @@ void USART3_IRQHandler()
}
USART_ClearITPendingBit(USART3, USART_IT_RXNE);
intcount3++;
}
if (USART_GetITStatus(USART3, USART_IT_TXE)) {
@ -535,17 +541,34 @@ void USART3_IRQHandler()
}
}
#if defined(STM32F7_NUCLEO)
// USART3 - TXD PD8 - RXD PD9
#define USART3_GPIO_PinSource_TX GPIO_PinSource8
#define USART3_GPIO_PinSource_RX GPIO_PinSource9
#define USART3_GPIO_Pin_TX GPIO_Pin_8
#define USART3_GPIO_Pin_RX GPIO_Pin_9
#define USART3_GPIO_PORT GPIOD
#define USART3_RCC_Periph RCC_AHB1Periph_GPIOD
#else
// USART3 - TXD PC10 - RXD PC11
#define USART3_GPIO_PinSource_TX GPIO_PinSource10
#define USART3_GPIO_PinSource_RX GPIO_PinSource11
#define USART3_GPIO_Pin_TX GPIO_Pin_10
#define USART3_GPIO_Pin_RX GPIO_Pin_11
#define USART3_GPIO_PORT GPIOC
#define USART3_RCC_Periph RCC_AHB1Periph_GPIOC
#endif
void InitUSART3(int speed)
{
// USART3 - TXD PC10 - RXD PC11
GPIO_InitTypeDef GPIO_InitStructure;
USART_InitTypeDef USART_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE);
RCC_AHB1PeriphClockCmd(USART3_RCC_Periph, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3, ENABLE);
GPIO_PinAFConfig(GPIOC, GPIO_PinSource10, GPIO_AF_USART3);
GPIO_PinAFConfig(GPIOC, GPIO_PinSource11, GPIO_AF_USART3);
GPIO_PinAFConfig(USART3_GPIO_PORT, USART3_GPIO_PinSource_TX, GPIO_AF_USART3);
GPIO_PinAFConfig(USART3_GPIO_PORT, USART3_GPIO_PinSource_RX, GPIO_AF_USART3);
// USART IRQ init
NVIC_InitStructure.NVIC_IRQChannel = USART3_IRQn;
@ -559,9 +582,9 @@ void InitUSART3(int speed)
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10 | GPIO_Pin_11; // Tx | Rx
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOC, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = USART3_GPIO_Pin_TX | USART3_GPIO_Pin_RX; // Tx | Rx
GPIO_InitStructure.GPIO_Speed = GPIO_Fast_Speed;
GPIO_Init(USART3_GPIO_PORT, &GPIO_InitStructure);
// Configure USART baud rate
USART_StructInit(&USART_InitStructure);
@ -582,7 +605,7 @@ void InitUSART3(int speed)
RXSerialfifoinit3();
}
uint8_t AvailUSART3(void)
uint8_t AvailUSART3()
{
if (RXSerialfifolevel3() > 0U)
return 1U;
@ -590,7 +613,12 @@ uint8_t AvailUSART3(void)
return 0U;
}
uint8_t ReadUSART3(void)
int AvailForWriteUSART3()
{
return TX_SERIAL_FIFO_SIZE - TXSerialfifolevel3();
}
uint8_t ReadUSART3()
{
uint8_t data_c = RXSerialfifo3[RXSerialfifotail3];
@ -612,8 +640,8 @@ void WriteUSART3(const uint8_t* data, uint16_t length)
#endif
/* ************* UART5 ***************** */
#if !(defined(STM32F4_NUCLEO) && defined(STM32F4_NUCLEO_ARDUINO_HEADER))
volatile uint32_t intcount5;
volatile uint8_t TXSerialfifo5[TX_SERIAL_FIFO_SIZE];
volatile uint8_t RXSerialfifo5[RX_SERIAL_FIFO_SIZE];
volatile uint16_t TXSerialfifohead5, TXSerialfifotail5;
@ -700,7 +728,6 @@ void UART5_IRQHandler()
}
USART_ClearITPendingBit(UART5, USART_IT_RXNE);
intcount5++;
}
if (USART_GetITStatus(UART5, USART_IT_TXE)) {
@ -748,7 +775,7 @@ void InitUART5(int speed)
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12; // Tx
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Speed = GPIO_Fast_Speed;
GPIO_Init(GPIOC, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; // Rx
@ -773,7 +800,7 @@ void InitUART5(int speed)
RXSerialfifoinit5();
}
uint8_t AvailUART5(void)
uint8_t AvailUART5()
{
if (RXSerialfifolevel5() > 0U)
return 1U;
@ -781,7 +808,12 @@ uint8_t AvailUART5(void)
return 0U;
}
uint8_t ReadUART5(void)
int AvailForWriteUART5()
{
return TX_SERIAL_FIFO_SIZE - TXSerialfifolevel5();
}
uint8_t ReadUART5()
{
uint8_t data_c = RXSerialfifo5[RXSerialfifotail5];
@ -800,22 +832,27 @@ void WriteUART5(const uint8_t* data, uint16_t length)
USART_ITConfig(UART5, USART_IT_TXE, ENABLE);
}
#endif
/////////////////////////////////////////////////////////////////
void CSerialPort::beginInt(uint8_t n, int speed)
{
switch (n) {
case 1U:
#if defined(STM32F4_DISCOVERY)
#if defined(STM32F4_DISCOVERY) || defined(STM32F7_NUCLEO)
InitUSART3(speed);
#elif defined(STM32F4_PI)
#elif defined(STM32F4_PI) || defined(STM32F4_F4M) || defined(STM32F722_PI) || defined(STM32F722_F7M) || defined(STM32F4_DVM)
InitUSART1(speed);
#elif defined(STM32F4_NUCLEO)
InitUSART2(speed);
#endif
break;
case 3U:
#if defined(STM32F4_NUCLEO) && defined(STM32F4_NUCLEO_ARDUINO_HEADER)
InitUSART1(speed);
#else
InitUART5(speed);
#endif
break;
default:
break;
@ -826,17 +863,43 @@ int CSerialPort::availableInt(uint8_t n)
{
switch (n) {
case 1U:
#if defined(STM32F4_DISCOVERY)
#if defined(STM32F4_DISCOVERY) || defined(STM32F7_NUCLEO)
return AvailUSART3();
#elif defined(STM32F4_PI)
#elif defined(STM32F4_PI) || defined(STM32F4_F4M) || defined(STM32F722_PI) || defined(STM32F722_F7M) || defined(STM32F4_DVM)
return AvailUSART1();
#elif defined(STM32F4_NUCLEO)
return AvailUSART2();
#endif
case 3U:
#if defined(STM32F4_NUCLEO) && defined(STM32F4_NUCLEO_ARDUINO_HEADER)
return AvailUSART1();
#else
return AvailUART5();
#endif
default:
return false;
return 0;
}
}
int CSerialPort::availableForWriteInt(uint8_t n)
{
switch (n) {
case 1U:
#if defined(STM32F4_DISCOVERY) || defined(STM32F7_NUCLEO)
return AvailForWriteUSART3();
#elif defined(STM32F4_PI) || defined(STM32F4_F4M) || defined(STM32F722_PI) || defined(STM32F722_F7M) || defined(STM32F4_DVM)
return AvailForWriteUSART1();
#elif defined(STM32F4_NUCLEO)
return AvailForWriteUSART2();
#endif
case 3U:
#if defined(STM32F4_NUCLEO) && defined(STM32F4_NUCLEO_ARDUINO_HEADER)
return AvailForWriteUSART1();
#else
return AvailForWriteUART5();
#endif
default:
return 0;
}
}
@ -844,15 +907,19 @@ uint8_t CSerialPort::readInt(uint8_t n)
{
switch (n) {
case 1U:
#if defined(STM32F4_DISCOVERY)
#if defined(STM32F4_DISCOVERY) || defined(STM32F7_NUCLEO)
return ReadUSART3();
#elif defined(STM32F4_PI)
#elif defined(STM32F4_PI) || defined(STM32F4_F4M) || defined(STM32F722_PI) || defined(STM32F722_F7M) || defined(STM32F4_DVM)
return ReadUSART1();
#elif defined(STM32F4_NUCLEO)
return ReadUSART2();
#endif
case 3U:
#if defined(STM32F4_NUCLEO) && defined(STM32F4_NUCLEO_ARDUINO_HEADER)
return ReadUSART1();
#else
return ReadUART5();
#endif
default:
return 0U;
}
@ -862,11 +929,11 @@ void CSerialPort::writeInt(uint8_t n, const uint8_t* data, uint16_t length, bool
{
switch (n) {
case 1U:
#if defined(STM32F4_DISCOVERY)
#if defined(STM32F4_DISCOVERY) || defined(STM32F7_NUCLEO)
WriteUSART3(data, length);
if (flush)
TXSerialFlush3();
#elif defined(STM32F4_PI)
#elif defined(STM32F4_PI) || defined(STM32F4_F4M) || defined(STM32F722_PI) || defined(STM32F722_F7M) || defined(STM32F4_DVM)
WriteUSART1(data, length);
if (flush)
TXSerialFlush1();
@ -877,9 +944,15 @@ void CSerialPort::writeInt(uint8_t n, const uint8_t* data, uint16_t length, bool
#endif
break;
case 3U:
#if defined(STM32F4_NUCLEO) && defined(STM32F4_NUCLEO_ARDUINO_HEADER)
WriteUSART1(data, length);
if (flush)
TXSerialFlush1();
#else
WriteUART5(data, length);
if (flush)
TXSerialFlush5();
#endif
break;
default:
break;
@ -887,4 +960,3 @@ void CSerialPort::writeInt(uint8_t n, const uint8_t* data, uint16_t length, bool
}
#endif

160
SerialSTM_CMSIS.cpp Normal file
View File

@ -0,0 +1,160 @@
/*
* Copyright (C) 2017 by Wojciech Krutnik N0CALL
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "Config.h"
#include "Globals.h"
#include "RingBuff.h"
#include "SerialPort.h"
/*
Pin definitions (configuration in IOSTM_CMSIS.c):
- Host communication:
USART1 - TXD PA9 - RXD PA10
*/
#if defined(STM32F1)
// BaudRate calculator macro
// source: STM32 HAL Library (stm32f1xx_hal_usart.h)
#define USART_DIV(__PCLK__, __BAUD__) (((__PCLK__)*25)/(4*(__BAUD__)))
#define USART_DIVMANT(__PCLK__, __BAUD__) (USART_DIV((__PCLK__), (__BAUD__))/100)
#define USART_DIVFRAQ(__PCLK__, __BAUD__) (((USART_DIV((__PCLK__), (__BAUD__)) - (USART_DIVMANT((__PCLK__), (__BAUD__)) * 100)) * 16 + 50) / 100)
#define USART_BRR(__PCLK__, __BAUD__) ((USART_DIVMANT((__PCLK__), (__BAUD__)) << 4)|(USART_DIVFRAQ((__PCLK__), (__BAUD__)) & 0x0F))
#define USART_BUFFER_SIZE 256U
DECLARE_RINGBUFFER_TYPE(USARTBuffer, USART_BUFFER_SIZE);
/* ************* USART1 ***************** */
static volatile USARTBuffer_t txBuffer1={.size=USART_BUFFER_SIZE};
static volatile USARTBuffer_t rxBuffer1={.size=USART_BUFFER_SIZE};
extern "C" {
bitband_t txe = (bitband_t)BITBAND_PERIPH(&USART1->SR, USART_SR_TXE_Pos);
bitband_t rxne = (bitband_t)BITBAND_PERIPH(&USART1->SR, USART_SR_RXNE_Pos);
bitband_t txeie = (bitband_t)BITBAND_PERIPH(&USART1->CR1, USART_CR1_TXEIE_Pos);
RAMFUNC void USART1_IRQHandler()
{
/* Transmitting data */
if(*txe){
if(!(RINGBUFF_EMPTY(txBuffer1))){
USART1->DR = RINGBUFF_READ(txBuffer1);
}else{ /* Buffer empty */
*txeie = 0; /* Don't send further data */
}
}
/* Receiving data */
if(*rxne){
RINGBUFF_WRITE(rxBuffer1, USART1->DR);
}
}
}
void USART1Init(int speed)
{
RCC->APB2ENR |= RCC_APB2ENR_USART1EN;
USART1->BRR = USART_BRR(72000000UL, speed);
USART1->CR1 = USART_CR1_UE | USART_CR1_TE |
USART_CR1_RE | USART_CR1_RXNEIE; // Enable USART and RX interrupt
NVIC_EnableIRQ(USART1_IRQn);
}
RAMFUNC void USART1TxData(const uint8_t* data, uint16_t length)
{
NVIC_DisableIRQ(USART1_IRQn);
/* Check remaining space in buffer */
if(RINGBUFF_COUNT(txBuffer1) + length > RINGBUFF_SIZE(txBuffer1)){
NVIC_EnableIRQ(USART1_IRQn);
return;
}
/* Append data to buffer */
while(length--){
RINGBUFF_WRITE(txBuffer1, *(data++));
}
/* Start sending data */
USART1->CR1 |= USART_CR1_TXEIE;
NVIC_EnableIRQ(USART1_IRQn);
}
/////////////////////////////////////////////////////////////////
void CSerialPort::beginInt(uint8_t n, int speed)
{
switch (n) {
case 1U:
USART1Init(speed);
break;
default:
break;
}
}
int CSerialPort::availableInt(uint8_t n)
{
switch (n) {
case 1U:
return !RINGBUFF_EMPTY(rxBuffer1);
default:
return false;
}
}
uint8_t CSerialPort::readInt(uint8_t n)
{
switch (n) {
case 1U:
return RINGBUFF_READ(rxBuffer1);
default:
return 0U;
}
}
void CSerialPort::writeInt(uint8_t n, const uint8_t* data, uint16_t length, bool flush)
{
bitband_t tc = (bitband_t)BITBAND_PERIPH(&USART1->SR, USART_SR_TC_Pos);
switch (n) {
case 1U:
USART1TxData(data, length);
*tc = 0;
if (flush) {
while (!RINGBUFF_EMPTY(txBuffer1) || !tc)
;
}
break;
default:
break;
}
}
#endif

View File

@ -19,8 +19,12 @@
#if !defined(UTILS_H)
#define UTILS_H
#if defined(STM32F4XX) || defined(STM32F4)
#if defined(STM32F4XX)
#include "stm32f4xx.h"
#elif defined(STM32F7XX)
#include "stm32f7xx.h"
#elif defined(STM32F105xC)
#include "stm32f1xx.h"
#include <cstddef>
#else
#include <Arduino.h>

View File

@ -1,5 +1,5 @@
/*
* Copyright (C) 2009-2015 by Jonathan Naylor G4KLX
* Copyright (C) 2016,2017 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -24,13 +24,16 @@ const unsigned int YSF_RADIO_SYMBOL_LENGTH = 10U; // At 48 kHz sample rate
const unsigned int YSF_FRAME_LENGTH_BYTES = 120U;
const unsigned int YSF_FRAME_LENGTH_BITS = YSF_FRAME_LENGTH_BYTES * 8U;
const unsigned int YSF_FRAME_LENGTH_SYMBOLS = YSF_FRAME_LENGTH_BYTES * 4U;
const unsigned int YSF_FRAME_LENGTH_SAMPLES = YSF_FRAME_LENGTH_SYMBOLS * YSF_RADIO_SYMBOL_LENGTH;
const unsigned int YSF_SYNC_LENGTH_BYTES = 5U;
const unsigned int YSF_SYNC_LENGTH_BITS = YSF_SYNC_LENGTH_BYTES * 8U;
const unsigned int YSF_SYNC_LENGTH_SYMBOLS = YSF_SYNC_LENGTH_BYTES * 4U;
const unsigned int YSF_SYNC_LENGTH_SAMPLES = YSF_SYNC_LENGTH_SYMBOLS * YSF_RADIO_SYMBOL_LENGTH;
const unsigned int YSF_FICH_LENGTH_BITS = 200U;
const unsigned int YSF_FICH_LENGTH_SYMBOLS = 100U;
const unsigned int YSF_FICH_LENGTH_SAMPLES = YSF_FICH_LENGTH_SYMBOLS * YSF_RADIO_SYMBOL_LENGTH;
const uint8_t YSF_SYNC_BYTES[] = {0xD4U, 0x71U, 0xC9U, 0x63U, 0x4DU};
const uint8_t YSF_SYNC_BYTES_LENGTH = 5U;
@ -41,6 +44,9 @@ const uint64_t YSF_SYNC_BITS_MASK = 0x000000FFFFFFFFFFU;
// D 4 7 1 C 9 6 3 4 D
// 11 01 01 00 01 11 00 01 11 00 10 01 01 10 00 11 01 00 11 01
// -3 +3 +3 +1 +3 -3 +1 +3 -3 +1 -1 +3 +3 -1 +3 -3 +3 +1 -3 +3
const int8_t YSF_SYNC_SYMBOLS_VALUES[] = {-3, +3, +3, +1, +3, -3, +1, +3, -3, +1, -1, +3, +3, -1, +3, -3, +3, +1, -3, +3};
const uint32_t YSF_SYNC_SYMBOLS = 0x0007B5ADU;
const uint32_t YSF_SYNC_SYMBOLS_MASK = 0x000FFFFFU;

482
YSFRX.cpp
View File

@ -1,5 +1,5 @@
/*
* Copyright (C) 2009-2016 by Jonathan Naylor G4KLX
* Copyright (C) 2009-2017 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -16,209 +16,169 @@
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
// #define WANT_DEBUG
#include "Config.h"
#include "Globals.h"
#include "YSFRX.h"
#include "Utils.h"
const unsigned int BUFFER_LENGTH = 200U;
const q15_t SCALING_FACTOR = 18750; // Q15(0.55)
const uint32_t PLLMAX = 0x10000U;
const uint32_t PLLINC = PLLMAX / YSF_RADIO_SYMBOL_LENGTH;
const uint32_t INC = PLLINC / 32U;
const uint8_t MAX_SYNC_BIT_START_ERRS = 2U;
const uint8_t MAX_SYNC_BIT_RUN_ERRS = 4U;
const uint8_t SYNC_SYMBOL_ERRS = 0U;
const uint8_t SYNC_BIT_START_ERRS = 2U;
const uint8_t SYNC_BIT_RUN_ERRS = 4U;
const unsigned int MAX_SYNC_FRAMES = 4U + 1U;
const uint8_t MAX_SYNC_SYMBOLS_ERRS = 3U;
const uint8_t BIT_MASK_TABLE[] = {0x80U, 0x40U, 0x20U, 0x10U, 0x08U, 0x04U, 0x02U, 0x01U};
#define WRITE_BIT1(p,i,b) p[(i)>>3] = (b) ? (p[(i)>>3] | BIT_MASK_TABLE[(i)&7]) : (p[(i)>>3] & ~BIT_MASK_TABLE[(i)&7])
#define READ_BIT1(p,i) (p[(i)>>3] & BIT_MASK_TABLE[(i)&7])
const uint8_t NOAVEPTR = 99U;
const uint16_t NOENDPTR = 9999U;
const unsigned int MAX_SYNC_FRAMES = 4U + 1U;
CYSFRX::CYSFRX() :
m_pll(0U),
m_prev(false),
m_state(YSFRXS_NONE),
m_bitBuffer(0x00U),
m_symbols(),
m_outBuffer(),
m_buffer(NULL),
m_bufferPtr(0U),
m_symbolPtr(0U),
m_bitBuffer(),
m_buffer(),
m_bitPtr(0U),
m_dataPtr(0U),
m_startPtr(NOENDPTR),
m_endPtr(NOENDPTR),
m_syncPtr(NOENDPTR),
m_minSyncPtr(NOENDPTR),
m_maxSyncPtr(NOENDPTR),
m_maxCorr(0),
m_lostCount(0U),
m_centre(0),
m_threshold(0)
m_countdown(0U),
m_centre(),
m_centreVal(0),
m_threshold(),
m_thresholdVal(0),
m_averagePtr(NOAVEPTR),
m_rssiAccum(0U),
m_rssiCount(0U)
{
m_buffer = m_outBuffer + 1U;
}
void CYSFRX::reset()
{
m_pll = 0U;
m_prev = false;
m_state = YSFRXS_NONE;
m_bitBuffer = 0x00U;
m_bufferPtr = 0U;
m_symbolPtr = 0U;
m_dataPtr = 0U;
m_bitPtr = 0U;
m_maxCorr = 0;
m_averagePtr = NOAVEPTR;
m_startPtr = NOENDPTR;
m_endPtr = NOENDPTR;
m_syncPtr = NOENDPTR;
m_minSyncPtr = NOENDPTR;
m_maxSyncPtr = NOENDPTR;
m_centreVal = 0;
m_thresholdVal = 0;
m_lostCount = 0U;
m_centre = 0;
m_threshold = 0;
m_countdown = 0U;
m_rssiAccum = 0U;
m_rssiCount = 0U;
}
void CYSFRX::samples(const q15_t* samples, uint8_t length)
void CYSFRX::samples(const q15_t* samples, uint16_t* rssi, uint8_t length)
{
for (uint16_t i = 0U; i < length; i++) {
bool bit = samples[i] < 0;
for (uint8_t i = 0U; i < length; i++) {
q15_t sample = samples[i];
if (bit != m_prev) {
if (m_pll < (PLLMAX / 2U))
m_pll += INC;
else
m_pll -= INC;
m_rssiAccum += rssi[i];
m_rssiCount++;
m_bitBuffer[m_bitPtr] <<= 1;
if (sample < 0)
m_bitBuffer[m_bitPtr] |= 0x01U;
m_buffer[m_dataPtr] = sample;
switch (m_state) {
case YSFRXS_DATA:
processData(sample);
break;
default:
processNone(sample);
break;
}
m_prev = bit;
m_dataPtr++;
if (m_dataPtr >= YSF_FRAME_LENGTH_SAMPLES)
m_dataPtr = 0U;
m_pll += PLLINC;
if (m_pll >= PLLMAX) {
m_pll -= PLLMAX;
if (m_state == YSFRXS_NONE)
processNone(samples[i]);
else
processData(samples[i]);
}
m_bitPtr++;
if (m_bitPtr >= YSF_RADIO_SYMBOL_LENGTH)
m_bitPtr = 0U;
}
}
void CYSFRX::processNone(q15_t sample)
{
m_symbolBuffer <<= 1;
if (sample < 0)
m_symbolBuffer |= 0x01U;
m_symbols[m_symbolPtr] = sample;
// Fuzzy matching of the data sync bit sequence
if (countBits32((m_symbolBuffer & YSF_SYNC_SYMBOLS_MASK) ^ YSF_SYNC_SYMBOLS) <= SYNC_SYMBOL_ERRS) {
q15_t max = -16000;
q15_t min = 16000;
for (uint8_t i = 0U; i < YSF_SYNC_LENGTH_SYMBOLS; i++) {
q15_t val = m_symbols[i];
if (val > max)
max = val;
if (val < min)
min = val;
}
q15_t centre = (max + min) >> 1;
q31_t v1 = (max - centre) * SCALING_FACTOR;
q15_t threshold = q15_t(v1 >> 15);
uint16_t ptr = m_symbolPtr + 1U;
if (ptr >= YSF_SYNC_LENGTH_SYMBOLS)
ptr = 0U;
for (uint8_t i = 0U; i < YSF_SYNC_LENGTH_SYMBOLS; i++) {
q15_t sample = m_symbols[ptr] - centre;
if (sample < -threshold) {
m_bitBuffer <<= 2;
m_bitBuffer |= 0x01U;
} else if (sample < 0) {
m_bitBuffer <<= 2;
m_bitBuffer |= 0x00U;
} else if (sample < threshold) {
m_bitBuffer <<= 2;
m_bitBuffer |= 0x02U;
} else {
m_bitBuffer <<= 2;
m_bitBuffer |= 0x03U;
}
ptr++;
if (ptr >= YSF_SYNC_LENGTH_SYMBOLS)
ptr = 0U;
}
// Fuzzy matching of the data sync bit sequence
if (countBits64((m_bitBuffer & YSF_SYNC_BITS_MASK) ^ YSF_SYNC_BITS) <= SYNC_BIT_START_ERRS) {
DEBUG5("YSFRX: sync found in None min/max/centre/threshold", min, max, centre, threshold);
for (uint8_t i = 0U; i < YSF_SYNC_LENGTH_BYTES; i++)
m_buffer[i] = YSF_SYNC_BYTES[i];
m_centre = centre;
m_threshold = threshold;
m_lostCount = MAX_SYNC_FRAMES;
m_bufferPtr = YSF_SYNC_LENGTH_BITS;
m_state = YSFRXS_DATA;
bool ret = correlateSync();
if (ret) {
// On the first sync, start the countdown to the state change
if (m_countdown == 0U) {
m_rssiAccum = 0U;
m_rssiCount = 0U;
io.setDecode(true);
io.setADCDetection(true);
m_averagePtr = NOAVEPTR;
m_countdown = 5U;
}
}
m_symbolPtr++;
if (m_symbolPtr >= YSF_SYNC_LENGTH_SYMBOLS)
m_symbolPtr = 0U;
if (m_countdown > 0U)
m_countdown--;
if (m_countdown == 1U) {
m_minSyncPtr = m_syncPtr + YSF_FRAME_LENGTH_SAMPLES - 1U;
if (m_minSyncPtr >= YSF_FRAME_LENGTH_SAMPLES)
m_minSyncPtr -= YSF_FRAME_LENGTH_SAMPLES;
m_maxSyncPtr = m_syncPtr + 1U;
if (m_maxSyncPtr >= YSF_FRAME_LENGTH_SAMPLES)
m_maxSyncPtr -= YSF_FRAME_LENGTH_SAMPLES;
m_state = YSFRXS_DATA;
m_countdown = 0U;
}
}
void CYSFRX::processData(q15_t sample)
{
sample -= m_centre;
if (sample < -m_threshold) {
m_bitBuffer <<= 2;
m_bitBuffer |= 0x01U;
WRITE_BIT1(m_buffer, m_bufferPtr, false);
m_bufferPtr++;
WRITE_BIT1(m_buffer, m_bufferPtr, true);
m_bufferPtr++;
} else if (sample < 0) {
m_bitBuffer <<= 2;
m_bitBuffer |= 0x00U;
WRITE_BIT1(m_buffer, m_bufferPtr, false);
m_bufferPtr++;
WRITE_BIT1(m_buffer, m_bufferPtr, false);
m_bufferPtr++;
} else if (sample < m_threshold) {
m_bitBuffer <<= 2;
m_bitBuffer |= 0x02U;
WRITE_BIT1(m_buffer, m_bufferPtr, true);
m_bufferPtr++;
WRITE_BIT1(m_buffer, m_bufferPtr, false);
m_bufferPtr++;
if (m_minSyncPtr < m_maxSyncPtr) {
if (m_dataPtr >= m_minSyncPtr && m_dataPtr <= m_maxSyncPtr)
correlateSync();
} else {
m_bitBuffer <<= 2;
m_bitBuffer |= 0x03U;
WRITE_BIT1(m_buffer, m_bufferPtr, true);
m_bufferPtr++;
WRITE_BIT1(m_buffer, m_bufferPtr, true);
m_bufferPtr++;
if (m_dataPtr >= m_minSyncPtr || m_dataPtr <= m_maxSyncPtr)
correlateSync();
}
// Only search for a sync in the right place +-2 symbols
if (m_bufferPtr >= (YSF_SYNC_LENGTH_BITS - 2U) && m_bufferPtr <= (YSF_SYNC_LENGTH_BITS + 2U)) {
// Fuzzy matching of the data sync bit sequence
if (countBits64((m_bitBuffer & YSF_SYNC_BITS_MASK) ^ YSF_SYNC_BITS) <= SYNC_BIT_RUN_ERRS) {
DEBUG2("YSFRX: found sync in Data, pos", m_bufferPtr - YSF_SYNC_LENGTH_BITS);
m_lostCount = MAX_SYNC_FRAMES;
m_bufferPtr = YSF_SYNC_LENGTH_BITS;
}
if (m_dataPtr == m_endPtr) {
// Only update the centre and threshold if they are from a good sync
if (m_lostCount == MAX_SYNC_FRAMES) {
m_minSyncPtr = m_syncPtr + YSF_FRAME_LENGTH_SAMPLES - 1U;
if (m_minSyncPtr >= YSF_FRAME_LENGTH_SAMPLES)
m_minSyncPtr -= YSF_FRAME_LENGTH_SAMPLES;
m_maxSyncPtr = m_syncPtr + 1U;
if (m_maxSyncPtr >= YSF_FRAME_LENGTH_SAMPLES)
m_maxSyncPtr -= YSF_FRAME_LENGTH_SAMPLES;
}
// Send a data frame to the host if the required number of bits have been received
if (m_bufferPtr == YSF_FRAME_LENGTH_BITS) {
calculateLevels(m_startPtr, YSF_FRAME_LENGTH_SYMBOLS);
DEBUG4("YSFRX: sync found pos/centre/threshold", m_syncPtr, m_centreVal, m_thresholdVal);
uint8_t frame[YSF_FRAME_LENGTH_BYTES + 3U];
samplesToBits(m_startPtr, YSF_FRAME_LENGTH_SYMBOLS, frame, 8U, m_centreVal, m_thresholdVal);
// We've not seen a data sync for too long, signal RXLOST and change to RX_NONE
m_lostCount--;
if (m_lostCount == 0U) {
@ -230,15 +190,215 @@ void CYSFRX::processData(q15_t sample)
serial.writeYSFLost();
m_state = YSFRXS_NONE;
m_endPtr = NOENDPTR;
m_averagePtr = NOAVEPTR;
m_countdown = 0U;
m_maxCorr = 0;
} else {
m_outBuffer[0U] = m_lostCount == (MAX_SYNC_FRAMES - 1U) ? 0x01U : 0x00U;
serial.writeYSFData(m_outBuffer, YSF_FRAME_LENGTH_BYTES + 1U);
// Start the next frame
::memset(m_outBuffer, 0x00U, YSF_FRAME_LENGTH_BYTES + 3U);
m_bufferPtr = 0U;
frame[0U] = m_lostCount == (MAX_SYNC_FRAMES - 1U) ? 0x01U : 0x00U;
writeRSSIData(frame);
m_maxCorr = 0;
}
}
}
bool CYSFRX::correlateSync()
{
if (countBits32((m_bitBuffer[m_bitPtr] & YSF_SYNC_SYMBOLS_MASK) ^ YSF_SYNC_SYMBOLS) <= MAX_SYNC_SYMBOLS_ERRS) {
uint16_t ptr = m_dataPtr + YSF_FRAME_LENGTH_SAMPLES - YSF_SYNC_LENGTH_SAMPLES + YSF_RADIO_SYMBOL_LENGTH;
if (ptr >= YSF_FRAME_LENGTH_SAMPLES)
ptr -= YSF_FRAME_LENGTH_SAMPLES;
q31_t corr = 0;
q15_t min = 16000;
q15_t max = -16000;
for (uint8_t i = 0U; i < YSF_SYNC_LENGTH_SYMBOLS; i++) {
q15_t val = m_buffer[ptr];
if (val > max)
max = val;
if (val < min)
min = val;
switch (YSF_SYNC_SYMBOLS_VALUES[i]) {
case +3:
corr -= (val + val + val);
break;
case +1:
corr -= val;
break;
case -1:
corr += val;
break;
default: // -3
corr += (val + val + val);
break;
}
ptr += YSF_RADIO_SYMBOL_LENGTH;
if (ptr >= YSF_FRAME_LENGTH_SAMPLES)
ptr -= YSF_FRAME_LENGTH_SAMPLES;
}
if (corr > m_maxCorr) {
if (m_averagePtr == NOAVEPTR) {
m_centreVal = (max + min) >> 1;
q31_t v1 = (max - m_centreVal) * SCALING_FACTOR;
m_thresholdVal = q15_t(v1 >> 15);
}
uint16_t startPtr = m_dataPtr + YSF_FRAME_LENGTH_SAMPLES - YSF_SYNC_LENGTH_SAMPLES + YSF_RADIO_SYMBOL_LENGTH;
if (startPtr >= YSF_FRAME_LENGTH_SAMPLES)
startPtr -= YSF_FRAME_LENGTH_SAMPLES;
uint8_t sync[YSF_SYNC_BYTES_LENGTH];
samplesToBits(startPtr, YSF_SYNC_LENGTH_SYMBOLS, sync, 0U, m_centreVal, m_thresholdVal);
uint8_t maxErrs;
if (m_state == YSFRXS_NONE)
maxErrs = MAX_SYNC_BIT_START_ERRS;
else
maxErrs = MAX_SYNC_BIT_RUN_ERRS;
uint8_t errs = 0U;
for (uint8_t i = 0U; i < YSF_SYNC_BYTES_LENGTH; i++)
errs += countBits8(sync[i] ^ YSF_SYNC_BYTES[i]);
if (errs <= maxErrs) {
m_maxCorr = corr;
m_lostCount = MAX_SYNC_FRAMES;
m_syncPtr = m_dataPtr;
m_startPtr = startPtr;
m_endPtr = m_dataPtr + YSF_FRAME_LENGTH_SAMPLES - YSF_SYNC_LENGTH_SAMPLES - 1U;
if (m_endPtr >= YSF_FRAME_LENGTH_SAMPLES)
m_endPtr -= YSF_FRAME_LENGTH_SAMPLES;
return true;
}
}
}
return false;
}
void CYSFRX::calculateLevels(uint16_t start, uint16_t count)
{
q15_t maxPos = -16000;
q15_t minPos = 16000;
q15_t maxNeg = 16000;
q15_t minNeg = -16000;
for (uint16_t i = 0U; i < count; i++) {
q15_t sample = m_buffer[start];
if (sample > 0) {
if (sample > maxPos)
maxPos = sample;
if (sample < minPos)
minPos = sample;
} else {
if (sample < maxNeg)
maxNeg = sample;
if (sample > minNeg)
minNeg = sample;
}
start += YSF_RADIO_SYMBOL_LENGTH;
if (start >= YSF_FRAME_LENGTH_SAMPLES)
start -= YSF_FRAME_LENGTH_SAMPLES;
}
q15_t posThresh = (maxPos + minPos) >> 1;
q15_t negThresh = (maxNeg + minNeg) >> 1;
q15_t centre = (posThresh + negThresh) >> 1;
q15_t threshold = posThresh - centre;
DEBUG5("YSFRX: pos/neg/centre/threshold", posThresh, negThresh, centre, threshold);
if (m_averagePtr == NOAVEPTR) {
for (uint8_t i = 0U; i < 16U; i++) {
m_centre[i] = centre;
m_threshold[i] = threshold;
}
m_averagePtr = 0U;
} else {
m_centre[m_averagePtr] = centre;
m_threshold[m_averagePtr] = threshold;
m_averagePtr++;
if (m_averagePtr >= 16U)
m_averagePtr = 0U;
}
m_centreVal = 0;
m_thresholdVal = 0;
for (uint8_t i = 0U; i < 16U; i++) {
m_centreVal += m_centre[i];
m_thresholdVal += m_threshold[i];
}
m_centreVal >>= 4;
m_thresholdVal >>= 4;
}
void CYSFRX::samplesToBits(uint16_t start, uint16_t count, uint8_t* buffer, uint16_t offset, q15_t centre, q15_t threshold)
{
for (uint16_t i = 0U; i < count; i++) {
q15_t sample = m_buffer[start] - centre;
if (sample < -threshold) {
WRITE_BIT1(buffer, offset, false);
offset++;
WRITE_BIT1(buffer, offset, true);
offset++;
} else if (sample < 0) {
WRITE_BIT1(buffer, offset, false);
offset++;
WRITE_BIT1(buffer, offset, false);
offset++;
} else if (sample < threshold) {
WRITE_BIT1(buffer, offset, true);
offset++;
WRITE_BIT1(buffer, offset, false);
offset++;
} else {
WRITE_BIT1(buffer, offset, true);
offset++;
WRITE_BIT1(buffer, offset, true);
offset++;
}
start += YSF_RADIO_SYMBOL_LENGTH;
if (start >= YSF_FRAME_LENGTH_SAMPLES)
start -= YSF_FRAME_LENGTH_SAMPLES;
}
}
void CYSFRX::writeRSSIData(uint8_t* data)
{
#if defined(SEND_RSSI_DATA)
if (m_rssiCount > 0U) {
uint16_t rssi = m_rssiAccum / m_rssiCount;
data[121U] = (rssi >> 8) & 0xFFU;
data[122U] = (rssi >> 0) & 0xFFU;
serial.writeYSFData(data, YSF_FRAME_LENGTH_BYTES + 3U);
} else {
serial.writeYSFData(data, YSF_FRAME_LENGTH_BYTES + 1U);
}
#else
serial.writeYSFData(data, YSF_FRAME_LENGTH_BYTES + 1U);
#endif
m_rssiAccum = 0U;
m_rssiCount = 0U;
}

37
YSFRX.h
View File

@ -1,5 +1,5 @@
/*
* Copyright (C) 2015,2016 by Jonathan Naylor G4KLX
* Copyright (C) 2015,2016,2017 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -31,27 +31,38 @@ class CYSFRX {
public:
CYSFRX();
void samples(const q15_t* samples, uint8_t length);
void samples(const q15_t* samples, uint16_t* rssi, uint8_t length);
void reset();
private:
uint32_t m_pll;
bool m_prev;
YSFRX_STATE m_state;
uint32_t m_symbolBuffer;
uint64_t m_bitBuffer;
q15_t m_symbols[YSF_SYNC_LENGTH_SYMBOLS];
uint8_t m_outBuffer[YSF_FRAME_LENGTH_BYTES + 3U];
uint8_t* m_buffer;
uint16_t m_bufferPtr;
uint16_t m_symbolPtr;
uint32_t m_bitBuffer[YSF_RADIO_SYMBOL_LENGTH];
q15_t m_buffer[YSF_FRAME_LENGTH_SAMPLES];
uint16_t m_bitPtr;
uint16_t m_dataPtr;
uint16_t m_startPtr;
uint16_t m_endPtr;
uint16_t m_syncPtr;
uint16_t m_minSyncPtr;
uint16_t m_maxSyncPtr;
q31_t m_maxCorr;
uint16_t m_lostCount;
q15_t m_centre;
q15_t m_threshold;
uint8_t m_countdown;
q15_t m_centre[16U];
q15_t m_centreVal;
q15_t m_threshold[16U];
q15_t m_thresholdVal;
uint8_t m_averagePtr;
uint32_t m_rssiAccum;
uint16_t m_rssiCount;
void processNone(q15_t sample);
void processData(q15_t sample);
bool correlateSync();
void calculateLevels(uint16_t start, uint16_t count);
void samplesToBits(uint16_t start, uint16_t count, uint8_t* buffer, uint16_t offset, q15_t centre, q15_t threshold);
void writeRSSIData(uint8_t* data);
};
#endif

View File

@ -1,5 +1,6 @@
/*
* Copyright (C) 2009-2016 by Jonathan Naylor G4KLX
* Copyright (C) 2009-2017 by Jonathan Naylor G4KLX
* Copyright (C) 2017 by Andy Uribe CA6JAU
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -16,42 +17,53 @@
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
// #define WANT_DEBUG
#include "Config.h"
#include "Globals.h"
#include "YSFTX.h"
#include "YSFDefines.h"
// Generated using rcosdesign(0.2, 4, 10, 'sqrt') in MATLAB
static q15_t YSF_C4FSK_FILTER[] = {486, 39, -480, -1022, -1526, -1928, -2164, -2178, -1927, -1384, -548, 561, 1898, 3399, 4980, 6546, 7999, 9246, 10202, 10803, 11008, 10803, 10202, 9246,
7999, 6546, 4980, 3399, 1898, 561, -548, -1384, -1927, -2178, -2164, -1928, -1526, -1022, -480, 39, 486, 0};
const uint16_t YSF_C4FSK_FILTER_LEN = 42U;
// Generated using rcosdesign(0.2, 8, 10, 'sqrt') in MATLAB
static q15_t RRC_0_2_FILTER[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 850, 592, 219, -234, -720, -1179,
-1548, -1769, -1795, -1597, -1172, -544, 237, 1092, 1927, 2637,
3120, 3286, 3073, 2454, 1447, 116, -1431, -3043, -4544, -5739,
-6442, -6483, -5735, -4121, -1633, 1669, 5651, 10118, 14822,
19484, 23810, 27520, 30367, 32156, 32767, 32156, 30367, 27520,
23810, 19484, 14822, 10118, 5651, 1669, -1633, -4121, -5735,
-6483, -6442, -5739, -4544, -3043, -1431, 116, 1447, 2454,
3073, 3286, 3120, 2637, 1927, 1092, 237, -544, -1172, -1597,
-1795, -1769, -1548, -1179, -720, -234, 219, 592, 850}; // numTaps = 90, L = 10
const uint16_t RRC_0_2_FILTER_PHASE_LEN = 9U; // phaseLength = numTaps/L
const q15_t YSF_LEVELA[] = { 499, 499, 499, 499, 499, 499, 499, 499, 499, 499};
const q15_t YSF_LEVELB[] = { 166, 166, 166, 166, 166, 166, 166, 166, 166, 166};
const q15_t YSF_LEVELC[] = {-166, -166, -166, -166, -166, -166, -166, -166, -166, -166};
const q15_t YSF_LEVELD[] = {-499, -499, -499, -499, -499, -499, -499, -499, -499, -499};
const q15_t YSF_LEVELA_HI = 1893;
const q15_t YSF_LEVELB_HI = 631;
const q15_t YSF_LEVELC_HI = -631;
const q15_t YSF_LEVELD_HI = -1893;
const q15_t YSF_LEVELA_LO = 948;
const q15_t YSF_LEVELB_LO = 316;
const q15_t YSF_LEVELC_LO = -316;
const q15_t YSF_LEVELD_LO = -948;
const uint8_t YSF_START_SYNC = 0x77U;
const uint8_t YSF_END_SYNC = 0xFFU;
CYSFTX::CYSFTX() :
m_buffer(1500U),
m_buffer(4000U),
m_modFilter(),
m_modState(),
m_poBuffer(),
m_poLen(0U),
m_poPtr(0U),
m_txDelay(240U), // 200ms
m_count(0U)
m_loDev(false)
{
::memset(m_modState, 0x00U, 90U * sizeof(q15_t));
::memset(m_modState, 0x00U, 16U * sizeof(q15_t));
m_modFilter.numTaps = YSF_C4FSK_FILTER_LEN;
m_modFilter.L = YSF_RADIO_SYMBOL_LENGTH;
m_modFilter.phaseLength = RRC_0_2_FILTER_PHASE_LEN;
m_modFilter.pCoeffs = RRC_0_2_FILTER;
m_modFilter.pState = m_modState;
m_modFilter.pCoeffs = YSF_C4FSK_FILTER;
}
void CYSFTX::process()
@ -61,8 +73,6 @@ void CYSFTX::process()
if (m_poLen == 0U) {
if (!m_tx) {
m_count = 0U;
for (uint16_t i = 0U; i < m_txDelay; i++)
m_poBuffer[m_poLen++] = YSF_START_SYNC;
} else {
@ -110,59 +120,48 @@ uint8_t CYSFTX::writeData(const uint8_t* data, uint8_t length)
void CYSFTX::writeByte(uint8_t c)
{
q15_t inBuffer[YSF_RADIO_SYMBOL_LENGTH * 4U + 1U];
q15_t outBuffer[YSF_RADIO_SYMBOL_LENGTH * 4U + 1U];
q15_t inBuffer[4U];
q15_t outBuffer[YSF_RADIO_SYMBOL_LENGTH * 4U];
const uint8_t MASK = 0xC0U;
q15_t* p = inBuffer;
for (uint8_t i = 0U; i < 4U; i++, c <<= 2, p += YSF_RADIO_SYMBOL_LENGTH) {
for (uint8_t i = 0U; i < 4U; i++, c <<= 2) {
switch (c & MASK) {
case 0xC0U:
::memcpy(p, YSF_LEVELA, YSF_RADIO_SYMBOL_LENGTH * sizeof(q15_t));
inBuffer[i] = m_loDev ? YSF_LEVELA_LO : YSF_LEVELA_HI;
break;
case 0x80U:
::memcpy(p, YSF_LEVELB, YSF_RADIO_SYMBOL_LENGTH * sizeof(q15_t));
inBuffer[i] = m_loDev ? YSF_LEVELB_LO : YSF_LEVELB_HI;
break;
case 0x00U:
::memcpy(p, YSF_LEVELC, YSF_RADIO_SYMBOL_LENGTH * sizeof(q15_t));
inBuffer[i] = m_loDev ? YSF_LEVELC_LO : YSF_LEVELC_HI;
break;
default:
::memcpy(p, YSF_LEVELD, YSF_RADIO_SYMBOL_LENGTH * sizeof(q15_t));
inBuffer[i] = m_loDev ? YSF_LEVELD_LO : YSF_LEVELD_HI;
break;
}
}
uint16_t blockSize = YSF_RADIO_SYMBOL_LENGTH * 4U;
::arm_fir_interpolate_q15(&m_modFilter, inBuffer, outBuffer, 4U);
// Handle the case of the oscillator not being accurate enough
if (m_sampleCount > 0U) {
m_count += YSF_RADIO_SYMBOL_LENGTH * 4U;
if (m_count >= m_sampleCount) {
if (m_sampleInsert) {
inBuffer[YSF_RADIO_SYMBOL_LENGTH * 4U] = inBuffer[YSF_RADIO_SYMBOL_LENGTH * 4U - 1U];
blockSize++;
} else {
blockSize--;
}
m_count -= m_sampleCount;
}
}
::arm_fir_fast_q15(&m_modFilter, inBuffer, outBuffer, blockSize);
io.write(STATE_YSF, outBuffer, blockSize);
io.write(STATE_YSF, outBuffer, YSF_RADIO_SYMBOL_LENGTH * 4U);
}
void CYSFTX::setTXDelay(uint8_t delay)
{
m_txDelay = 600U + uint16_t(delay) * 12U; // 500ms + tx delay
if (m_txDelay > 1200U)
m_txDelay = 1200U;
}
uint16_t CYSFTX::getSpace() const
uint8_t CYSFTX::getSpace() const
{
return m_buffer.getSpace() / YSF_FRAME_LENGTH_BYTES;
}
void CYSFTX::setLoDev(bool on)
{
m_loDev = on;
}

14
YSFTX.h
View File

@ -1,5 +1,5 @@
/*
* Copyright (C) 2015,2016 by Jonathan Naylor G4KLX
* Copyright (C) 2015,2016,2017 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
@ -33,17 +33,19 @@ public:
void setTXDelay(uint8_t delay);
uint16_t getSpace() const;
uint8_t getSpace() const;
void setLoDev(bool on);
private:
CSerialRB m_buffer;
arm_fir_instance_q15 m_modFilter;
q15_t m_modState[90U]; // NoTaps + BlockSize - 1, 42 + 20 - 1 plus some spare
uint8_t m_poBuffer[920U];
arm_fir_interpolate_instance_q15 m_modFilter;
q15_t m_modState[16U]; // blockSize + phaseLength - 1, 4 + 9 - 1 plus some spare
uint8_t m_poBuffer[1200U];
uint16_t m_poLen;
uint16_t m_poPtr;
uint16_t m_txDelay;
uint32_t m_count;
bool m_loDev;
void writeByte(uint8_t c);
};

2
openocd.cfg Normal file
View File

@ -0,0 +1,2 @@
source [find interface/stlink-v2.cfg]
source [find target/stm32f1x.cfg]

137
stm32f722_link.ld Normal file
View File

@ -0,0 +1,137 @@
/*
* Copyright (C) 2017 by Andy Uribe CA6JAU
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/* Required amount of heap and stack */
_min_heap_size = 0x1000;
_min_stack_size = 0x0800;
/* The entry point in the interrupt vector table */
ENTRY(Reset_Handler)
/* Memory areas */
MEMORY
{
ROM (rx) : ORIGIN = 0x08000000, LENGTH = 512K /* FLASH */
RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 256K /* Main RAM */
}
/* Stack start address (end of 256K RAM) */
_estack = ORIGIN(RAM) + LENGTH(RAM);
SECTIONS
{
.text :
{
/* The interrupt vector table */
. = ALIGN(4);
KEEP(*(.isr_vector .isr_vector.*))
/* The program code */
. = ALIGN(4);
*(.text .text*)
*(.rodata .rodata*)
/* ARM-Thumb code */
*(.glue_7) *(.glue_7t)
. = ALIGN(4);
KEEP(*(.init))
KEEP(*(.fini))
/* EABI C++ global constructors support */
. = ALIGN(4);
__preinit_array_start = .;
KEEP (*(.preinit_array))
__preinit_array_end = .;
/* EABI C++ global constructors support */
. = ALIGN(4);
__init_array_start = .;
KEEP (*(SORT(.init_array.*)))
KEEP (*(.init_array))
__init_array_end = .;
/* EABI C++ global constructors support */
. = ALIGN(4);
__fini_array_start = .;
KEEP (*(.fini_array))
KEEP (*(SORT(.fini_array.*)))
__fini_array_end = .;
} > ROM
/* ARM sections containing exception unwinding information */
.ARM.extab : {
__extab_start = .;
*(.ARM.extab* .gnu.linkonce.armextab.*)
__extab_end = .;
} > ROM
/* ARM index entries for section unwinding */
.ARM.exidx : {
__exidx_start = .;
*(.ARM.exidx*)
__exidx_end = .;
} > ROM
/* Start address for the initialization values of the .data section */
_sidata = .;
/* The .data section (initialized data) */
.data : AT ( _sidata )
{
. = ALIGN(4);
_sdata = . ; /* Start address for the .data section */
*(.data .data*)
. = ALIGN(4);
_edata = . ; /* End address for the .data section */
} > RAM
/* The .bss section (uninitialized data) */
.bss :
{
. = ALIGN(4);
_sbss = .; /* Start address for the .bss section */
__bss_start__ = _sbss;
*(.bss)
*(.bss*)
*(COMMON)
. = ALIGN(4);
_ebss = . ; /* End address for the .bss section */
__bss_end__ = _ebss;
} > RAM
/* Space for heap and stack */
.heap_stack :
{
end = . ; /* 'end' symbol defines heap location */
_end = end ;
. = . + _min_heap_size; /* Additional space for heap and stack */
. = . + _min_stack_size;
} > RAM
/* Remove information from the standard libraries */
/DISCARD/ :
{
libc.a ( * )
libm.a ( * )
libgcc.a ( * )
}
}

137
stm32f767_link.ld Normal file
View File

@ -0,0 +1,137 @@
/*
* Copyright (C) 2017 by Andy Uribe CA6JAU
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/* Required amount of heap and stack */
_min_heap_size = 0x1000;
_min_stack_size = 0x0800;
/* The entry point in the interrupt vector table */
ENTRY(Reset_Handler)
/* Memory areas */
MEMORY
{
ROM (rx) : ORIGIN = 0x08000000, LENGTH = 2048K /* FLASH */
RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 512K /* Main RAM */
}
/* Stack start address (end of 512K RAM) */
_estack = ORIGIN(RAM) + LENGTH(RAM);
SECTIONS
{
.text :
{
/* The interrupt vector table */
. = ALIGN(4);
KEEP(*(.isr_vector .isr_vector.*))
/* The program code */
. = ALIGN(4);
*(.text .text*)
*(.rodata .rodata*)
/* ARM-Thumb code */
*(.glue_7) *(.glue_7t)
. = ALIGN(4);
KEEP(*(.init))
KEEP(*(.fini))
/* EABI C++ global constructors support */
. = ALIGN(4);
__preinit_array_start = .;
KEEP (*(.preinit_array))
__preinit_array_end = .;
/* EABI C++ global constructors support */
. = ALIGN(4);
__init_array_start = .;
KEEP (*(SORT(.init_array.*)))
KEEP (*(.init_array))
__init_array_end = .;
/* EABI C++ global constructors support */
. = ALIGN(4);
__fini_array_start = .;
KEEP (*(.fini_array))
KEEP (*(SORT(.fini_array.*)))
__fini_array_end = .;
} > ROM
/* ARM sections containing exception unwinding information */
.ARM.extab : {
__extab_start = .;
*(.ARM.extab* .gnu.linkonce.armextab.*)
__extab_end = .;
} > ROM
/* ARM index entries for section unwinding */
.ARM.exidx : {
__exidx_start = .;
*(.ARM.exidx*)
__exidx_end = .;
} > ROM
/* Start address for the initialization values of the .data section */
_sidata = .;
/* The .data section (initialized data) */
.data : AT ( _sidata )
{
. = ALIGN(4);
_sdata = . ; /* Start address for the .data section */
*(.data .data*)
. = ALIGN(4);
_edata = . ; /* End address for the .data section */
} > RAM
/* The .bss section (uninitialized data) */
.bss :
{
. = ALIGN(4);
_sbss = .; /* Start address for the .bss section */
__bss_start__ = _sbss;
*(.bss)
*(.bss*)
*(COMMON)
. = ALIGN(4);
_ebss = . ; /* End address for the .bss section */
__bss_end__ = _ebss;
} > RAM
/* Space for heap and stack */
.heap_stack :
{
end = . ; /* 'end' symbol defines heap location */
_end = end ;
. = . + _min_heap_size; /* Additional space for heap and stack */
. = . + _min_stack_size;
} > RAM
/* Remove information from the standard libraries */
/DISCARD/ :
{
libc.a ( * )
libm.a ( * )
libgcc.a ( * )
}
}