Merge pull request #281 from F4FXL/FM_Ext

Speed improvements and fixes for FM Ext
This commit is contained in:
Jonathan Naylor 2020-05-24 07:56:45 +01:00 committed by GitHub
commit 9137af8e3f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
12 changed files with 270 additions and 608 deletions

View File

@ -35,6 +35,11 @@
// For 19.2 MHz // For 19.2 MHz
// #define EXTERNAL_OSC 19200000 // #define EXTERNAL_OSC 19200000
// Use a higher baudrate for host communication. Required for FM network !
#define SERIAL_SPEED 115200 //suitable for most older boards (Arduino, Due STM32F1_POG etc). External FM will NOT work with this !
// #define SERIAL_SPEED 230400 //Only works on newer board M4, M7, Teensy. External FM will works with this
// #define SERIAL_SPEED 460800 // Experimantal
// Allow the use of the COS line to lockout the modem // Allow the use of the COS line to lockout the modem
// #define USE_COS_AS_LOCKOUT // #define USE_COS_AS_LOCKOUT

3
FM.cpp
View File

@ -153,7 +153,8 @@ void CFM::process()
uint16_t space = io.getSpace(); uint16_t space = io.getSpace();
uint16_t length = m_outputRFRB.getData(); uint16_t length = m_outputRFRB.getData();
if (space > FM_TX_BLOCK_SIZE && length >= FM_TX_BLOCK_SIZE ) { if (space > 10U && length >= FM_TX_BLOCK_SIZE ) {
space -= 2U;
if (length > FM_TX_BLOCK_SIZE) if (length > FM_TX_BLOCK_SIZE)
length = FM_TX_BLOCK_SIZE; length = FM_TX_BLOCK_SIZE;
if (space > FM_TX_BLOCK_SIZE) if (space > FM_TX_BLOCK_SIZE)

View File

@ -29,7 +29,7 @@ THE SOFTWARE.
// based on https://raw.githubusercontent.com/berndporr/iir_fixed_point/master/DirectFormI.h // based on https://raw.githubusercontent.com/berndporr/iir_fixed_point/master/DirectFormI.h
#include "Globals.h" #include <cstdint>
#ifndef DIRECTFORMI_H_ #ifndef DIRECTFORMI_H_
#define DIRECTFORMI_H_ #define DIRECTFORMI_H_

View File

@ -20,7 +20,6 @@
#include "Config.h" #include "Config.h"
#include "FMDownsampler.h" #include "FMDownsampler.h"
CFMDownsampler::CFMDownsampler(uint16_t length) : CFMDownsampler::CFMDownsampler(uint16_t length) :
m_ringBuffer(length), m_ringBuffer(length),
m_samplePack(0U), m_samplePack(0U),
@ -32,17 +31,17 @@ m_sampleIndex(0U)
void CFMDownsampler::addSample(q15_t sample) void CFMDownsampler::addSample(q15_t sample)
{ {
uint16_t usample = uint16_t(sample + 2048); uint32_t usample = uint32_t(int32_t(sample) + 2048);
//only take one of three samples //only take one of three samples
switch(m_sampleIndex){ switch(m_sampleIndex){
case 0: case 0:
m_samplePack = uint32_t(usample) << 12; m_samplePack = usample << 12;
break; break;
case 3:{ case 3:{
m_samplePack |= uint32_t(usample); m_samplePack |= usample;
//we did not use MSB; skip it //we did not use MSB; skip it
TSamplePairPack pair{m_samplePackPointer[1U], m_samplePackPointer[2U], m_samplePackPointer[3U]}; TSamplePairPack pair{m_samplePackPointer[0U], m_samplePackPointer[1U], m_samplePackPointer[2U]};
m_ringBuffer.put(pair); m_ringBuffer.put(pair);

View File

@ -34,10 +34,8 @@ public:
private: private:
CRingBuffer<TSamplePairPack> m_ringBuffer; CRingBuffer<TSamplePairPack> m_ringBuffer;
uint32_t m_samplePack; uint32_t m_samplePack;
uint8_t* m_samplePackPointer; uint8_t* m_samplePackPointer;
uint8_t m_sampleIndex; uint8_t m_sampleIndex;
}; };

View File

@ -52,9 +52,9 @@ void CFMUpSampler::addData(const uint8_t* data, uint16_t length)
uint32_t pack = 0U; uint32_t pack = 0U;
uint8_t* packPtr = (uint8_t*)&pack; uint8_t* packPtr = (uint8_t*)&pack;
packPtr[1] = m_pack.byte0; packPtr[0U] = m_pack.byte0;
packPtr[2] = m_pack.byte1; packPtr[1U] = m_pack.byte1;
packPtr[3] = m_pack.byte2; packPtr[2U] = m_pack.byte2;
q15_t sample2 = q15_t(uint16_t(pack & FM_UPSAMPLE_MASK) - 2048); q15_t sample2 = q15_t(uint16_t(pack & FM_UPSAMPLE_MASK) - 2048);
q15_t sample1 = q15_t(uint16_t(pack >> 12) - 2048); q15_t sample1 = q15_t(uint16_t(pack >> 12) - 2048);

100
STMUART.cpp Normal file
View File

@ -0,0 +1,100 @@
/*
* Copyright (c) 2020 by Jonathan Naylor G4KLX
* Copyright (c) 2020 by Geoffrey Merck F4FXL - KC3FRA
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#if defined(STM32F4XX) || defined(STM32F7XX)
#include "STMUART.h"
CSTMUART::CSTMUART() :
m_usart(NULL)
{
}
void CSTMUART::init(USART_TypeDef* usart)
{
m_usart = usart;
}
void CSTMUART::write(const uint8_t * data, uint16_t length)
{
if(length == 0U || m_usart == NULL)
return;
m_txFifo.put(data[0]);
USART_ITConfig(m_usart, USART_IT_TXE, ENABLE);//switch TX IRQ is on
for(uint16_t i = 1U; i < length; i++) {
m_txFifo.put(data[i]);
}
USART_ITConfig(m_usart, USART_IT_TXE, ENABLE);//make sure TX IRQ is on
}
uint8_t CSTMUART::read()
{
return m_rxFifo.get();
}
void CSTMUART::handleIRQ()
{
if(m_usart == NULL)
return;
if (USART_GetITStatus(m_usart, USART_IT_RXNE)) {
if(!m_rxFifo.isFull())
m_rxFifo.put((uint8_t) USART_ReceiveData(m_usart));
USART_ClearITPendingBit(USART1, USART_IT_RXNE);
}
if (USART_GetITStatus(m_usart, USART_IT_TXE)) {
if(!m_txFifo.isEmpty())
USART_SendData(m_usart, m_txFifo.get());
USART_ClearITPendingBit(m_usart, USART_IT_TXE);
if (m_txFifo.isEmpty()) // if there's no more data to transmit then turn off TX interrupts
USART_ITConfig(m_usart, USART_IT_TXE, DISABLE);
}
}
// Flushes the transmit shift register
// warning: this call is blocking
void CSTMUART::flush()
{
if(m_usart == NULL)
return;
// wait until the TXE shows the shift register is empty
while (USART_GetITStatus(m_usart, USART_FLAG_TXE))
;
}
uint16_t CSTMUART::available()
{
return m_rxFifo.isEmpty() ? 0U : 1U;
}
uint16_t CSTMUART::availableForWrite()
{
return m_txFifo.isFull() ? 0U : 1U;
}
#endif

91
STMUART.h Normal file
View File

@ -0,0 +1,91 @@
/*
* Copyright (c) 2020 by Jonathan Naylor G4KLX
* Copyright (c) 2020 by Geoffrey Merck F4FXL - KC3FRA
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#if defined(STM32F4XX) || defined(STM32F7XX)
#if !defined(STMUART_H)
#define STMUART_H
#if defined(STM32F4XX)
#include "stm32f4xx.h"
#elif defined(STM32F7XX)
#include "stm32f7xx.h"
#endif
const uint16_t BUFFER_SIZE = 2048U; //needs to be a power of 2 !
const uint16_t BUFFER_MASK = BUFFER_SIZE - 1;
class CSTMUARTFIFO {
public:
CSTMUARTFIFO() :
m_head(0U),
m_tail(0U)
{
}
void put(uint8_t data)
{
m_buffer[BUFFER_MASK & (m_head++)] = data;
}
uint8_t get()
{
return m_buffer[BUFFER_MASK & (m_tail++)];
}
void reset()
{
m_tail = 0U;
m_head = 0U;
}
bool isEmpty()
{
return m_tail == m_head;
}
bool isFull()
{
return ((m_head + 1U) & BUFFER_MASK) == (m_tail & BUFFER_MASK);
}
private:
volatile uint8_t m_buffer[BUFFER_SIZE];
volatile uint16_t m_head;
volatile uint16_t m_tail;
};
class CSTMUART {
public:
CSTMUART();
void init(USART_TypeDef* usart);
void write(const uint8_t * data, uint16_t length);
uint8_t read();
void handleIRQ();
void flush();
uint16_t available();
uint16_t availableForWrite();
private:
USART_TypeDef * m_usart;
CSTMUARTFIFO m_rxFifo;
CSTMUARTFIFO m_txFifo;
};
#endif
#endif

View File

@ -602,7 +602,7 @@ void CSerialPort::setMode(MMDVM_STATE modemState)
void CSerialPort::start() void CSerialPort::start()
{ {
beginInt(1U, 115200); beginInt(1U, SERIAL_SPEED);
#if defined(SERIAL_REPEATER) #if defined(SERIAL_REPEATER)
beginInt(3U, 9600); beginInt(3U, 9600);

View File

@ -23,6 +23,10 @@
#include "Globals.h" #include "Globals.h"
#include "RingBuffer.h" #include "RingBuffer.h"
#if !defined(SERIAL_SPEED)
#define SERIAL_SPEED 115200
#endif
class CSerialPort { class CSerialPort {
public: public:

View File

@ -39,9 +39,7 @@ UART5 - TXD PC12 - RXD PD2 (Discovery, MMDVM-Pi, MMDVM-Pi F722 board, MMDVM-F4M
#if defined(STM32F4XX) || defined(STM32F7XX) #if defined(STM32F4XX) || defined(STM32F7XX)
#define TX_SERIAL_FIFO_SIZE 512U #include "STMUART.h"
#define RX_SERIAL_FIFO_SIZE 512U
extern "C" { extern "C" {
void USART1_IRQHandler(); void USART1_IRQHandler();
void USART2_IRQHandler(); void USART2_IRQHandler();
@ -52,111 +50,12 @@ extern "C" {
/* ************* USART1 ***************** */ /* ************* USART1 ***************** */
#if defined(STM32F4_PI) || defined(STM32F4_F4M) || defined(STM32F722_F7M) || defined(STM32F722_PI) || defined(STM32F722_RPT_HAT) || defined(STM32F4_DVM) || (defined(STM32F4_NUCLEO) && defined(STM32F4_NUCLEO_ARDUINO_HEADER)) || defined(DRCC_DVM) #if defined(STM32F4_PI) || defined(STM32F4_F4M) || defined(STM32F722_F7M) || defined(STM32F722_PI) || defined(STM32F722_RPT_HAT) || defined(STM32F4_DVM) || (defined(STM32F4_NUCLEO) && defined(STM32F4_NUCLEO_ARDUINO_HEADER)) || defined(DRCC_DVM)
volatile uint8_t TXSerialfifo1[TX_SERIAL_FIFO_SIZE];
volatile uint8_t RXSerialfifo1[RX_SERIAL_FIFO_SIZE];
volatile uint16_t TXSerialfifohead1, TXSerialfifotail1;
volatile uint16_t RXSerialfifohead1, RXSerialfifotail1;
// Init queues static CSTMUART m_USART1;
void TXSerialfifoinit1()
{
TXSerialfifohead1 = 0U;
TXSerialfifotail1 = 0U;
}
void RXSerialfifoinit1()
{
RXSerialfifohead1 = 0U;
RXSerialfifotail1 = 0U;
}
// How full is queue
// TODO decide if how full or how empty is preferred info to return
uint16_t TXSerialfifolevel1()
{
uint32_t tail = TXSerialfifotail1;
uint32_t head = TXSerialfifohead1;
if (tail > head)
return TX_SERIAL_FIFO_SIZE + head - tail;
else
return head - tail;
}
uint16_t RXSerialfifolevel1()
{
uint32_t tail = RXSerialfifotail1;
uint32_t head = RXSerialfifohead1;
if (tail > head)
return RX_SERIAL_FIFO_SIZE + head - tail;
else
return head - tail;
}
// Flushes the transmit shift register
// warning: this call is blocking
void TXSerialFlush1()
{
// wait until the TXE shows the shift register is empty
while (USART_GetITStatus(USART1, USART_FLAG_TXE))
;
}
uint8_t TXSerialfifoput1(uint8_t next)
{
if (TXSerialfifolevel1() < TX_SERIAL_FIFO_SIZE) {
TXSerialfifo1[TXSerialfifohead1] = next;
TXSerialfifohead1++;
if (TXSerialfifohead1 >= TX_SERIAL_FIFO_SIZE)
TXSerialfifohead1 = 0U;
// make sure transmit interrupts are enabled as long as there is data to send
USART_ITConfig(USART1, USART_IT_TXE, ENABLE);
return 1U;
} else {
return 0U; // signal an overflow occurred by returning a zero count
}
}
void USART1_IRQHandler() void USART1_IRQHandler()
{ {
uint8_t c; m_USART1.handleIRQ();
if (USART_GetITStatus(USART1, USART_IT_RXNE)) {
c = (uint8_t) USART_ReceiveData(USART1);
if (RXSerialfifolevel1() < RX_SERIAL_FIFO_SIZE) {
RXSerialfifo1[RXSerialfifohead1] = c;
RXSerialfifohead1++;
if (RXSerialfifohead1 >= RX_SERIAL_FIFO_SIZE)
RXSerialfifohead1 = 0U;
} else {
// TODO - do something if rx fifo is full?
}
USART_ClearITPendingBit(USART1, USART_IT_RXNE);
}
if (USART_GetITStatus(USART1, USART_IT_TXE)) {
c = 0U;
if (TXSerialfifohead1 != TXSerialfifotail1) { // if the fifo is not empty
c = TXSerialfifo1[TXSerialfifotail1];
TXSerialfifotail1++;
if (TXSerialfifotail1 >= TX_SERIAL_FIFO_SIZE)
TXSerialfifotail1 = 0U;
USART_SendData(USART1, c);
} else { // if there's no more data to transmit then turn off TX interrupts
USART_ITConfig(USART1, USART_IT_TXE, DISABLE);
}
USART_ClearITPendingBit(USART1, USART_IT_TXE);
}
} }
void InitUSART1(int speed) void InitUSART1(int speed)
@ -201,41 +100,7 @@ void InitUSART1(int speed)
USART_ITConfig(USART1, USART_IT_RXNE, ENABLE); USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);
// initialize the fifos m_USART1.init(USART1);
TXSerialfifoinit1();
RXSerialfifoinit1();
}
uint8_t AvailUSART1()
{
if (RXSerialfifolevel1() > 0U)
return 1U;
else
return 0U;
}
int AvailForWriteUSART1()
{
return TX_SERIAL_FIFO_SIZE - TXSerialfifolevel1();
}
uint8_t ReadUSART1()
{
uint8_t data_c = RXSerialfifo1[RXSerialfifotail1];
RXSerialfifotail1++;
if (RXSerialfifotail1 >= RX_SERIAL_FIFO_SIZE)
RXSerialfifotail1 = 0U;
return data_c;
}
void WriteUSART1(const uint8_t* data, uint16_t length)
{
for (uint16_t i = 0U; i < length; i++)
TXSerialfifoput1(data[i]);
USART_ITConfig(USART1, USART_IT_TXE, ENABLE);
} }
#endif #endif
@ -243,111 +108,12 @@ void WriteUSART1(const uint8_t* data, uint16_t length)
/* ************* USART2 ***************** */ /* ************* USART2 ***************** */
#if defined(STM32F4_NUCLEO) || defined(STM32F4_RPT_HAT_TGO) || defined(DRCC_DVM) #if defined(STM32F4_NUCLEO) || defined(STM32F4_RPT_HAT_TGO) || defined(DRCC_DVM)
volatile uint8_t TXSerialfifo2[TX_SERIAL_FIFO_SIZE]; static CSTMUART m_USART2;
volatile uint8_t RXSerialfifo2[RX_SERIAL_FIFO_SIZE];
volatile uint16_t TXSerialfifohead2, TXSerialfifotail2;
volatile uint16_t RXSerialfifohead2, RXSerialfifotail2;
// Init queues
void TXSerialfifoinit2()
{
TXSerialfifohead2 = 0U;
TXSerialfifotail2 = 0U;
}
void RXSerialfifoinit2()
{
RXSerialfifohead2 = 0U;
RXSerialfifotail2 = 0U;
}
// How full is queue
// TODO decide if how full or how empty is preferred info to return
uint16_t TXSerialfifolevel2()
{
uint32_t tail = TXSerialfifotail2;
uint32_t head = TXSerialfifohead2;
if (tail > head)
return TX_SERIAL_FIFO_SIZE + head - tail;
else
return head - tail;
}
uint16_t RXSerialfifolevel2()
{
uint32_t tail = RXSerialfifotail2;
uint32_t head = RXSerialfifohead2;
if (tail > head)
return RX_SERIAL_FIFO_SIZE + head - tail;
else
return head - tail;
}
// Flushes the transmit shift register
// warning: this call is blocking
void TXSerialFlush2()
{
// wait until the TXE shows the shift register is empty
while (USART_GetITStatus(USART2, USART_FLAG_TXE))
;
}
uint8_t TXSerialfifoput2(uint8_t next)
{
if (TXSerialfifolevel2() < TX_SERIAL_FIFO_SIZE) {
TXSerialfifo2[TXSerialfifohead2] = next;
TXSerialfifohead2++;
if (TXSerialfifohead2 >= TX_SERIAL_FIFO_SIZE)
TXSerialfifohead2 = 0U;
// make sure transmit interrupts are enabled as long as there is data to send
USART_ITConfig(USART2, USART_IT_TXE, ENABLE);
return 1U;
} else {
return 0U; // signal an overflow occurred by returning a zero count
}
}
void USART2_IRQHandler() void USART2_IRQHandler()
{ {
uint8_t c; m_USART2.handleIRQ();
if (USART_GetITStatus(USART2, USART_IT_RXNE)) {
c = (uint8_t) USART_ReceiveData(USART2);
if (RXSerialfifolevel2() < RX_SERIAL_FIFO_SIZE) {
RXSerialfifo2[RXSerialfifohead2] = c;
RXSerialfifohead2++;
if (RXSerialfifohead2 >= RX_SERIAL_FIFO_SIZE)
RXSerialfifohead2 = 0U;
} else {
// TODO - do something if rx fifo is full?
}
USART_ClearITPendingBit(USART2, USART_IT_RXNE);
}
if (USART_GetITStatus(USART2, USART_IT_TXE)) {
c = 0U;
if (TXSerialfifohead2 != TXSerialfifotail2) { // if the fifo is not empty
c = TXSerialfifo2[TXSerialfifotail2];
TXSerialfifotail2++;
if (TXSerialfifotail2 >= TX_SERIAL_FIFO_SIZE)
TXSerialfifotail2 = 0U;
USART_SendData(USART2, c);
} else { // if there's no more data to transmit then turn off TX interrupts
USART_ITConfig(USART2, USART_IT_TXE, DISABLE);
}
USART_ClearITPendingBit(USART2, USART_IT_TXE);
}
} }
void InitUSART2(int speed) void InitUSART2(int speed)
@ -392,41 +158,7 @@ void InitUSART2(int speed)
USART_ITConfig(USART2, USART_IT_RXNE, ENABLE); USART_ITConfig(USART2, USART_IT_RXNE, ENABLE);
// initialize the fifos m_USART2.init(USART2);
TXSerialfifoinit2();
RXSerialfifoinit2();
}
uint8_t AvailUSART2()
{
if (RXSerialfifolevel2() > 0U)
return 1U;
else
return 0U;
}
int AvailForWriteUSART2()
{
return TX_SERIAL_FIFO_SIZE - TXSerialfifolevel2();
}
uint8_t ReadUSART2()
{
uint8_t data_c = RXSerialfifo2[RXSerialfifotail2];
RXSerialfifotail2++;
if (RXSerialfifotail2 >= RX_SERIAL_FIFO_SIZE)
RXSerialfifotail2 = 0U;
return data_c;
}
void WriteUSART2(const uint8_t* data, uint16_t length)
{
for (uint16_t i = 0U; i < length; i++)
TXSerialfifoput2(data[i]);
USART_ITConfig(USART2, USART_IT_TXE, ENABLE);
} }
#endif #endif
@ -434,111 +166,11 @@ void WriteUSART2(const uint8_t* data, uint16_t length)
/* ************* USART3 ***************** */ /* ************* USART3 ***************** */
#if defined(STM32F4_DISCOVERY) || defined(STM32F7_NUCLEO) #if defined(STM32F4_DISCOVERY) || defined(STM32F7_NUCLEO)
volatile uint8_t TXSerialfifo3[TX_SERIAL_FIFO_SIZE]; static CSTMUART m_USART3;
volatile uint8_t RXSerialfifo3[RX_SERIAL_FIFO_SIZE];
volatile uint16_t TXSerialfifohead3, TXSerialfifotail3;
volatile uint16_t RXSerialfifohead3, RXSerialfifotail3;
// Init queues
void TXSerialfifoinit3()
{
TXSerialfifohead3 = 0U;
TXSerialfifotail3 = 0U;
}
void RXSerialfifoinit3()
{
RXSerialfifohead3 = 0U;
RXSerialfifotail3 = 0U;
}
// How full is queue
// TODO decide if how full or how empty is preferred info to return
uint16_t TXSerialfifolevel3()
{
uint32_t tail = TXSerialfifotail3;
uint32_t head = TXSerialfifohead3;
if (tail > head)
return TX_SERIAL_FIFO_SIZE + head - tail;
else
return head - tail;
}
uint16_t RXSerialfifolevel3()
{
uint32_t tail = RXSerialfifotail3;
uint32_t head = RXSerialfifohead3;
if (tail > head)
return RX_SERIAL_FIFO_SIZE + head - tail;
else
return head - tail;
}
// Flushes the transmit shift register
// warning: this call is blocking
void TXSerialFlush3()
{
// wait until the TXE shows the shift register is empty
while (USART_GetITStatus(USART3, USART_FLAG_TXE))
;
}
uint8_t TXSerialfifoput3(uint8_t next)
{
if (TXSerialfifolevel3() < TX_SERIAL_FIFO_SIZE) {
TXSerialfifo3[TXSerialfifohead3] = next;
TXSerialfifohead3++;
if (TXSerialfifohead3 >= TX_SERIAL_FIFO_SIZE)
TXSerialfifohead3 = 0U;
// make sure transmit interrupts are enabled as long as there is data to send
USART_ITConfig(USART3, USART_IT_TXE, ENABLE);
return 1U;
} else {
return 0U; // signal an overflow occurred by returning a zero count
}
}
void USART3_IRQHandler() void USART3_IRQHandler()
{ {
uint8_t c; m_USART3.handleIRQ();
if (USART_GetITStatus(USART3, USART_IT_RXNE)) {
c = (uint8_t) USART_ReceiveData(USART3);
if (RXSerialfifolevel3() < RX_SERIAL_FIFO_SIZE) {
RXSerialfifo3[RXSerialfifohead3] = c;
RXSerialfifohead3++;
if (RXSerialfifohead3 >= RX_SERIAL_FIFO_SIZE)
RXSerialfifohead3 = 0U;
} else {
// TODO - do something if rx fifo is full?
}
USART_ClearITPendingBit(USART3, USART_IT_RXNE);
}
if (USART_GetITStatus(USART3, USART_IT_TXE)) {
c = 0U;
if (TXSerialfifohead3 != TXSerialfifotail3) { // if the fifo is not empty
c = TXSerialfifo3[TXSerialfifotail3];
TXSerialfifotail3++;
if (TXSerialfifotail3 >= TX_SERIAL_FIFO_SIZE)
TXSerialfifotail3 = 0U;
USART_SendData(USART3, c);
} else { // if there's no more data to transmit then turn off TX interrupts
USART_ITConfig(USART3, USART_IT_TXE, DISABLE);
}
USART_ClearITPendingBit(USART3, USART_IT_TXE);
}
} }
#if defined(STM32F7_NUCLEO) #if defined(STM32F7_NUCLEO)
@ -600,41 +232,7 @@ void InitUSART3(int speed)
USART_ITConfig(USART3, USART_IT_RXNE, ENABLE); USART_ITConfig(USART3, USART_IT_RXNE, ENABLE);
// initialize the fifos m_USART3.init(USART3);
TXSerialfifoinit3();
RXSerialfifoinit3();
}
uint8_t AvailUSART3()
{
if (RXSerialfifolevel3() > 0U)
return 1U;
else
return 0U;
}
int AvailForWriteUSART3()
{
return TX_SERIAL_FIFO_SIZE - TXSerialfifolevel3();
}
uint8_t ReadUSART3()
{
uint8_t data_c = RXSerialfifo3[RXSerialfifotail3];
RXSerialfifotail3++;
if (RXSerialfifotail3 >= RX_SERIAL_FIFO_SIZE)
RXSerialfifotail3 = 0U;
return data_c;
}
void WriteUSART3(const uint8_t* data, uint16_t length)
{
for (uint16_t i = 0U; i < length; i++)
TXSerialfifoput3(data[i]);
USART_ITConfig(USART3, USART_IT_TXE, ENABLE);
} }
#endif #endif
@ -642,111 +240,11 @@ void WriteUSART3(const uint8_t* data, uint16_t length)
/* ************* UART5 ***************** */ /* ************* UART5 ***************** */
#if !(defined(STM32F4_NUCLEO) && defined(STM32F4_NUCLEO_ARDUINO_HEADER)) #if !(defined(STM32F4_NUCLEO) && defined(STM32F4_NUCLEO_ARDUINO_HEADER))
volatile uint8_t TXSerialfifo5[TX_SERIAL_FIFO_SIZE]; static CSTMUART m_UART5;
volatile uint8_t RXSerialfifo5[RX_SERIAL_FIFO_SIZE];
volatile uint16_t TXSerialfifohead5, TXSerialfifotail5;
volatile uint16_t RXSerialfifohead5, RXSerialfifotail5;
// Init queues
void TXSerialfifoinit5()
{
TXSerialfifohead5 = 0U;
TXSerialfifotail5 = 0U;
}
void RXSerialfifoinit5()
{
RXSerialfifohead5 = 0U;
RXSerialfifotail5 = 0U;
}
// How full is queue
// TODO decide if how full or how empty is preferred info to return
uint16_t TXSerialfifolevel5()
{
uint32_t tail = TXSerialfifotail5;
uint32_t head = TXSerialfifohead5;
if (tail > head)
return TX_SERIAL_FIFO_SIZE + head - tail;
else
return head - tail;
}
uint16_t RXSerialfifolevel5()
{
uint32_t tail = RXSerialfifotail5;
uint32_t head = RXSerialfifohead5;
if (tail > head)
return RX_SERIAL_FIFO_SIZE + head - tail;
else
return head - tail;
}
// Flushes the transmit shift register
// warning: this call is blocking
void TXSerialFlush5()
{
// wait until the TXE shows the shift register is empty
while (USART_GetITStatus(UART5, USART_FLAG_TXE))
;
}
uint8_t TXSerialfifoput5(uint8_t next)
{
if (TXSerialfifolevel5() < TX_SERIAL_FIFO_SIZE) {
TXSerialfifo5[TXSerialfifohead5] = next;
TXSerialfifohead5++;
if (TXSerialfifohead5 >= TX_SERIAL_FIFO_SIZE)
TXSerialfifohead5 = 0U;
// make sure transmit interrupts are enabled as long as there is data to send
USART_ITConfig(UART5, USART_IT_TXE, ENABLE);
return 1U;
} else {
return 0U; // signal an overflow occurred by returning a zero count
}
}
void UART5_IRQHandler() void UART5_IRQHandler()
{ {
uint8_t c; m_UART5.handleIRQ();
if (USART_GetITStatus(UART5, USART_IT_RXNE)) {
c = (uint8_t) USART_ReceiveData(UART5);
if (RXSerialfifolevel5() < RX_SERIAL_FIFO_SIZE) {
RXSerialfifo5[RXSerialfifohead5] = c;
RXSerialfifohead5++;
if (RXSerialfifohead5 >= RX_SERIAL_FIFO_SIZE)
RXSerialfifohead5 = 0U;
} else {
// TODO - do something if rx fifo is full?
}
USART_ClearITPendingBit(UART5, USART_IT_RXNE);
}
if (USART_GetITStatus(UART5, USART_IT_TXE)) {
c = 0U;
if (TXSerialfifohead5 != TXSerialfifotail5) { // if the fifo is not empty
c = TXSerialfifo5[TXSerialfifotail5];
TXSerialfifotail5++;
if (TXSerialfifotail5 >= TX_SERIAL_FIFO_SIZE)
TXSerialfifotail5 = 0U;
USART_SendData(UART5, c);
} else { // if there's no more data to transmit then turn off TX interrupts
USART_ITConfig(UART5, USART_IT_TXE, DISABLE);
}
USART_ClearITPendingBit(UART5, USART_IT_TXE);
}
} }
void InitUART5(int speed) void InitUART5(int speed)
@ -795,41 +293,7 @@ void InitUART5(int speed)
USART_ITConfig(UART5, USART_IT_RXNE, ENABLE); USART_ITConfig(UART5, USART_IT_RXNE, ENABLE);
// initialize the fifos m_UART5.init(UART5);
TXSerialfifoinit5();
RXSerialfifoinit5();
}
uint8_t AvailUART5()
{
if (RXSerialfifolevel5() > 0U)
return 1U;
else
return 0U;
}
int AvailForWriteUART5()
{
return TX_SERIAL_FIFO_SIZE - TXSerialfifolevel5();
}
uint8_t ReadUART5()
{
uint8_t data_c = RXSerialfifo5[RXSerialfifotail5];
RXSerialfifotail5++;
if (RXSerialfifotail5 >= RX_SERIAL_FIFO_SIZE)
RXSerialfifotail5 = 0U;
return data_c;
}
void WriteUART5(const uint8_t* data, uint16_t length)
{
for (uint16_t i = 0U; i < length; i++)
TXSerialfifoput5(data[i]);
USART_ITConfig(UART5, USART_IT_TXE, ENABLE);
} }
#endif #endif
@ -868,21 +332,21 @@ int CSerialPort::availableInt(uint8_t n)
switch (n) { switch (n) {
case 1U: case 1U:
#if defined(STM32F4_DISCOVERY) || defined(STM32F7_NUCLEO) #if defined(STM32F4_DISCOVERY) || defined(STM32F7_NUCLEO)
return AvailUSART3(); return m_USART3.availble();//AvailUSART3();
#elif defined(STM32F4_PI) || defined(STM32F4_F4M) || defined(STM32F722_PI) || defined(STM32F722_F7M) || defined(STM32F722_RPT_HAT) || defined(STM32F4_DVM) #elif defined(STM32F4_PI) || defined(STM32F4_F4M) || defined(STM32F722_PI) || defined(STM32F722_F7M) || defined(STM32F722_RPT_HAT) || defined(STM32F4_DVM)
return AvailUSART1(); return m_USART1.available();//AvailUSART1();
#elif defined(STM32F4_NUCLEO) || defined(STM32F4_RPT_HAT_TGO) #elif defined(STM32F4_NUCLEO) || defined(STM32F4_RPT_HAT_TGO)
return AvailUSART2(); return m_USART2.available();//AvailUSART2();
#elif defined(DRCC_DVM) #elif defined(DRCC_DVM)
return AvailUSART1(); return m_USART1.available();//AvailUSART1();
#endif #endif
case 3U: case 3U:
#if defined(STM32F4_NUCLEO) && defined(STM32F4_NUCLEO_ARDUINO_HEADER) #if defined(STM32F4_NUCLEO) && defined(STM32F4_NUCLEO_ARDUINO_HEADER)
return AvailUSART1(); return m_USART1.available(); //AvailUSART1();
#elif defined(DRCC_DVM) #elif defined(DRCC_DVM)
return AvailUSART2(); return m_USART2.available(); //AvailUSART2();
#else #else
return AvailUART5(); return m_UART5.available();//AvailUART5();
#endif #endif
default: default:
return 0; return 0;
@ -894,21 +358,21 @@ int CSerialPort::availableForWriteInt(uint8_t n)
switch (n) { switch (n) {
case 1U: case 1U:
#if defined(STM32F4_DISCOVERY) || defined(STM32F7_NUCLEO) #if defined(STM32F4_DISCOVERY) || defined(STM32F7_NUCLEO)
return AvailForWriteUSART3(); return m_USART3.availableForWrite(); //AvailForWriteUSART3();
#elif defined(STM32F4_PI) || defined(STM32F4_F4M) || defined(STM32F722_PI) || defined(STM32F722_F7M) || defined(STM32F722_RPT_HAT) || defined(STM32F4_DVM) #elif defined(STM32F4_PI) || defined(STM32F4_F4M) || defined(STM32F722_PI) || defined(STM32F722_F7M) || defined(STM32F722_RPT_HAT) || defined(STM32F4_DVM)
return AvailForWriteUSART1(); return m_USART1.availableForWrite(); //AvailForWriteUSART1();
#elif defined(STM32F4_NUCLEO) || defined(STM32F4_RPT_HAT_TGO) #elif defined(STM32F4_NUCLEO) || defined(STM32F4_RPT_HAT_TGO)
return AvailForWriteUSART2(); return m_USART2.availableForWrite();//AvailForWriteUSART2();
#elif defined(DRCC_DVM) #elif defined(DRCC_DVM)
return AvailForWriteUSART1(); return m_USART1.availableForWrite();//AvailForWriteUSART1();
#endif #endif
case 3U: case 3U:
#if defined(STM32F4_NUCLEO) && defined(STM32F4_NUCLEO_ARDUINO_HEADER) #if defined(STM32F4_NUCLEO) && defined(STM32F4_NUCLEO_ARDUINO_HEADER)
return AvailForWriteUSART1(); return m_USART1.availableForWrite(); //AvailForWriteUSART1();
#elif defined(DRCC_DVM) #elif defined(DRCC_DVM)
AvailForWriteUSART2(); return m_USART2.availableForWrite();//AvailForWriteUSART2();
#else #else
return AvailForWriteUART5(); return m_UART5.availableForWrite();//AvailForWriteUART5();
#endif #endif
default: default:
return 0; return 0;
@ -920,21 +384,21 @@ uint8_t CSerialPort::readInt(uint8_t n)
switch (n) { switch (n) {
case 1U: case 1U:
#if defined(STM32F4_DISCOVERY) || defined(STM32F7_NUCLEO) #if defined(STM32F4_DISCOVERY) || defined(STM32F7_NUCLEO)
return ReadUSART3(); return m_USART3.read();//ReadUSART3();
#elif defined(STM32F4_PI) || defined(STM32F4_F4M) || defined(STM32F722_PI) || defined(STM32F722_F7M) || defined(STM32F722_RPT_HAT) || defined(STM32F4_DVM) #elif defined(STM32F4_PI) || defined(STM32F4_F4M) || defined(STM32F722_PI) || defined(STM32F722_F7M) || defined(STM32F722_RPT_HAT) || defined(STM32F4_DVM)
return ReadUSART1(); return m_USART1.read();//ReadUSART1();
#elif defined(STM32F4_NUCLEO) || defined(STM32F4_RPT_HAT_TGO) #elif defined(STM32F4_NUCLEO) || defined(STM32F4_RPT_HAT_TGO)
return ReadUSART2(); return m_USART2.read();//ReadUSART2();
#elif defined(DRCC_DVM) #elif defined(DRCC_DVM)
return ReadUSART1(); return m_USART1.read();//ReadUSART1();
#endif #endif
case 3U: case 3U:
#if defined(STM32F4_NUCLEO) && defined(STM32F4_NUCLEO_ARDUINO_HEADER) #if defined(STM32F4_NUCLEO) && defined(STM32F4_NUCLEO_ARDUINO_HEADER)
return ReadUSART1(); return m_USART1.read();//ReadUSART1();
#elif defined(DRCC_DVM) #elif defined(DRCC_DVM)
return ReadUSART2(); return m_USART2.read();//ReadUSART2();
#else #else
return ReadUART5(); return m_UART5.read();//ReadUART5();
#endif #endif
default: default:
return 0U; return 0U;
@ -946,36 +410,36 @@ void CSerialPort::writeInt(uint8_t n, const uint8_t* data, uint16_t length, bool
switch (n) { switch (n) {
case 1U: case 1U:
#if defined(STM32F4_DISCOVERY) || defined(STM32F7_NUCLEO) #if defined(STM32F4_DISCOVERY) || defined(STM32F7_NUCLEO)
WriteUSART3(data, length); m_USART3.write(data, length); //WriteUSART3(data, length);
if (flush) if (flush)
TXSerialFlush3(); m_USART3.flush();//TXSerialFlush3();
#elif defined(STM32F4_PI) || defined(STM32F4_F4M) || defined(STM32F722_PI) || defined(STM32F722_F7M) || defined(STM32F722_RPT_HAT) || defined(STM32F4_DVM) #elif defined(STM32F4_PI) || defined(STM32F4_F4M) || defined(STM32F722_PI) || defined(STM32F722_F7M) || defined(STM32F722_RPT_HAT) || defined(STM32F4_DVM)
WriteUSART1(data, length); m_USART1.write(data, length);//WriteUSART1(data, length);
if (flush) if (flush)
TXSerialFlush1(); m_USART1.flush();//TXSerialFlush1();
#elif defined(STM32F4_NUCLEO) || defined(STM32F4_RPT_HAT_TGO) #elif defined(STM32F4_NUCLEO) || defined(STM32F4_RPT_HAT_TGO)
WriteUSART2(data, length); m_USART2.write(data, length);//WriteUSART2(data, length);
if (flush) if (flush)
TXSerialFlush2(); m_USART2.flush();//TXSerialFlush2();
#elif defined(DRCC_DVM) #elif defined(DRCC_DVM)
WriteUSART1(data, length); m_USART1.write(data, length);//WriteUSART1(data, length);
if (flush) if (flush)
TXSerialFlush1(); m_USART1.flush();//TXSerialFlush1();
#endif #endif
break; break;
case 3U: case 3U:
#if defined(STM32F4_NUCLEO) && defined(STM32F4_NUCLEO_ARDUINO_HEADER) #if defined(STM32F4_NUCLEO) && defined(STM32F4_NUCLEO_ARDUINO_HEADER)
WriteUSART1(data, length); m_USART1.write(data, length); //WriteUSART1(data, length);
if (flush) if (flush)
TXSerialFlush1(); m_USART1.flush();
#elif defined(DRCC_DVM) #elif defined(DRCC_DVM)
WriteUSART2(data, length); m_USART2.write(data, length);//WriteUSART2(data, length);
if (flush) if (flush)
TXSerialFlush2(); m_USART2.flush();//TXSerialFlush2();
#else #else
WriteUART5(data, length); m_UART5.write(data, length);//WriteUART5(data, length);
if (flush) if (flush)
TXSerialFlush5(); m_UART5.flush();//TXSerialFlush5();
#endif #endif
break; break;
default: default:

View File

@ -17,30 +17,30 @@ f2 = 2700
rp = 0.2 rp = 0.2
# scaling factor in bits, do not change ! # scaling factor in bits, do not change !
q = 0 q = 15
# scaling factor as facor... # scaling factor as facor...
scaling_factor = 2**q scaling_factor = 2**q
# let's generate a sequence of 2nd order IIR filters # let's generate a sequence of 2nd order IIR filters
sos = signal.cheby1(3,rp,[f1, f2],'bandpass', output='sos', fs=fs) sos = signal.cheby1(3,rp,[f1, f2],'bandpass', output='sos', fs=fs)
#sos = signal.cheby1(1, rp, 2122, 'lowpass', output='sos', fs=fs) #deemphasis filter #os = signal.cheby1(4, rp, f2, 'lowpass', output='sos', fs=fs) #deemphasis filter
#sos = signal.cheby1(1, rp, 2122, 'highpass', output='sos', fs=fs) #deemphasis filter #sos = signal.cheby1(1, rp, 2122, 'highpass', output='sos', fs=fs) #deemphasis filter
#sos = np.round((sos) * scaling_factor) sosrounded = np.round((sos) * scaling_factor)
# print coefficients # print coefficients
for biquad in sos: for biquad in sosrounded:
for coeff in biquad: for coeff in biquad:
#print(int(coeff),",",sep="",end="") print(int(coeff),",",sep="",end="")
print((coeff),",",sep="",end="") #print((coeff),",",sep="",end="")
print("") print("")
# plot the frequency response # plot the frequency response
b,a = signal.sos2tf(sos) b,a = signal.sos2tf(sos)
w,h = signal.freqz(b,a) w,h = signal.freqz(b,a, worN=2048)
pl.plot(w/np.pi/2*fs,20*np.log(np.abs(h))) pl.plot(w/np.pi/2*fs,20*np.log(np.abs(h)))
pl.xlabel('frequency/Hz'); pl.xlabel('frequency/Hz');
pl.ylabel('gain/dB'); pl.ylabel('gain/dB');
pl.ylim(top=1,bottom=-20); pl.ylim(top=1,bottom=-30);
pl.xlim(left=250, right=12000); pl.xlim(left=250, right=12000);
pl.show() pl.show()