///////////////////////////////////////
// Implements:
//   double sqrt(double x);
///////////////////////////////////////
// Notes:
//   This is taken from newlib.
//   Only included because pow() needs it.
// @nolint

/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunSoft, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice 
 * is preserved.
 * ====================================================
 */

#include <stdint.h>
#include <pblibc_private.h>

typedef union
{
  double value;
  struct
  {
    uint32_t lsw;
    uint32_t msw;
  } parts;
} ieee_double_shape_type;

#define EXTRACT_WORDS(ix0,ix1,d)        \
do {                \
  ieee_double_shape_type ew_u;          \
  ew_u.value = (d);           \
  (ix0) = ew_u.parts.msw;         \
  (ix1) = ew_u.parts.lsw;         \
} while (0)

/* Get the more significant 32 bit int from a double.  */

#define GET_HIGH_WORD(i,d)          \
do {                \
  ieee_double_shape_type gh_u;          \
  gh_u.value = (d);           \
  (i) = gh_u.parts.msw;           \
} while (0)

/* Get the less significant 32 bit int from a double.  */

#define GET_LOW_WORD(i,d)         \
do {                \
  ieee_double_shape_type gl_u;          \
  gl_u.value = (d);           \
  (i) = gl_u.parts.lsw;           \
} while (0)

#define INSERT_WORDS(d,ix0,ix1)         \
do {                \
  ieee_double_shape_type iw_u;          \
  iw_u.parts.msw = (ix0);         \
  iw_u.parts.lsw = (ix1);         \
  (d) = iw_u.value;           \
} while (0)

/* Set the more significant 32 bits of a double from an int.  */

#define SET_HIGH_WORD(d,v)          \
do {                \
  ieee_double_shape_type sh_u;          \
  sh_u.value = (d);           \
  sh_u.parts.msw = (v);           \
  (d) = sh_u.value;           \
} while (0)

/* Set the less significant 32 bits of a double from an int.  */

#define SET_LOW_WORD(d,v)         \
do {                \
  ieee_double_shape_type sl_u;          \
  sl_u.value = (d);           \
  sl_u.parts.lsw = (v);           \
  (d) = sl_u.value;           \
} while (0)

/* __ieee754_sqrt(x)
 * Return correctly rounded sqrt.
 *           ------------------------------------------
 *       |  Use the hardware sqrt if you have one |
 *           ------------------------------------------
 * Method:
 *   Bit by bit method using integer arithmetic. (Slow, but portable)
 *   1. Normalization
 *  Scale x to y in [1,4) with even powers of 2:
 *  find an integer k such that  1 <= (y=x*2^(2k)) < 4, then
 *    sqrt(x) = 2^k * sqrt(y)
 *   2. Bit by bit computation
 *  Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
 *       i               0
 *                                     i+1         2
 *      s  = 2*q , and  y  =  2   * ( y - q  ).   (1)
 *       i      i            i                 i
 *
 *  To compute q    from q , one checks whether
 *        i+1       i
 *
 *            -(i+1) 2
 *      (q + 2      ) <= y.     (2)
 *            i
 *                    -(i+1)
 *  If (2) is false, then q   = q ; otherwise q   = q  + 2      .
 *             i+1   i             i+1   i
 *
 *  With some algebric manipulation, it is not difficult to see
 *  that (2) is equivalent to
 *                             -(i+1)
 *      s  +  2       <= y      (3)
 *       i                i
 *
 *  The advantage of (3) is that s  and y  can be computed by
 *              i      i
 *  the following recurrence formula:
 *      if (3) is false
 *
 *      s     =  s  , y    = y   ;      (4)
 *       i+1      i    i+1    i
 *
 *      otherwise,
 *                         -i                     -(i+1)
 *      s   =  s  + 2  ,  y    = y  -  s  - 2     (5)
 *           i+1      i          i+1    i     i
 *
 *  One may easily use induction to prove (4) and (5).
 *  Note. Since the left hand side of (3) contain only i+2 bits,
 *        it does not necessary to do a full (53-bit) comparison
 *        in (3).
 *   3. Final rounding
 *  After generating the 53 bits result, we compute one more bit.
 *  Together with the remainder, we can decide whether the
 *  result is exact, bigger than 1/2ulp, or less than 1/2ulp
 *  (it will never equal to 1/2ulp).
 *  The rounding mode can be detected by checking whether
 *  huge + tiny is equal to huge, and whether huge - tiny is
 *  equal to huge for some floating point number "huge" and "tiny".
 *
 * Special cases:
 *  sqrt(+-0) = +-0   ... exact
 *  sqrt(inf) = inf
 *  sqrt(-ve) = NaN   ... with invalid signal
 *  sqrt(NaN) = NaN   ... with invalid signal for signaling NaN
 *
 * Other methods : see the appended file at the end of the program below.
 *---------------
 */

static  const double    one     = 1.0, tiny=1.0e-300;

double sqrt(double x)
{
  double z;
  int32_t sign = 0x80000000;
  uint32_t r,t1,s1,ix1,q1;
  int32_t ix0,s0,q,m,t,i;

  EXTRACT_WORDS(ix0,ix1,x);

    /* take care of Inf and NaN */
  if((ix0&0x7ff00000)==0x7ff00000) {
      return x*x+x;   /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
             sqrt(-inf)=sNaN */
  }
    /* take care of zero */
  if(ix0<=0) {
      if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
      else if(ix0<0)
    return (x-x)/(x-x);   /* sqrt(-ve) = sNaN */
  }
    /* normalize x */
  m = (ix0>>20);
  if(m==0) {        /* subnormal x */
      while(ix0==0) {
    m -= 21;
    ix0 |= (ix1>>11); ix1 <<= 21;
      }
      for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
      m -= i-1;
      ix0 |= (ix1>>(32-i));
      ix1 <<= i;
  }
  m -= 1023;  /* unbias exponent */
  ix0 = (ix0&0x000fffff)|0x00100000;
  if(m&1){  /* odd m, double x to make it even */
      ix0 += ix0 + ((ix1&sign)>>31);
      ix1 += ix1;
  }
  m >>= 1;  /* m = [m/2] */

    /* generate sqrt(x) bit by bit */
  ix0 += ix0 + ((ix1&sign)>>31);
  ix1 += ix1;
  q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
  r = 0x00200000;   /* r = moving bit from right to left */

  while(r!=0) {
      t = s0+r;
      if(t<=ix0) {
    s0   = t+r;
    ix0 -= t;
    q   += r;
      }
      ix0 += ix0 + ((ix1&sign)>>31);
      ix1 += ix1;
      r>>=1;
  }

  r = sign;
  while(r!=0) {
      t1 = s1+r;
      t  = s0;
      if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
    s1  = t1+r;
    if(((t1&sign)==(uint32_t)sign)&&(s1&sign)==0) s0 += 1;
    ix0 -= t;
    if (ix1 < t1) ix0 -= 1;
    ix1 -= t1;
    q1  += r;
      }
      ix0 += ix0 + ((ix1&sign)>>31);
      ix1 += ix1;
      r>>=1;
  }

    /* use floating add to find out rounding direction */
  if((ix0|ix1)!=0) {
      z = one-tiny; /* trigger inexact flag */
      if (z>=one) {
          z = one+tiny;
          if (q1==(uint32_t)0xffffffff) { q1=0; q += 1;}
    else if (z>one) {
        if (q1==(uint32_t)0xfffffffe) q+=1;
        q1+=2;
    } else
              q1 += (q1&1);
      }
  }
  ix0 = (q>>1)+0x3fe00000;
  ix1 =  q1>>1;
  if ((q&1)==1) ix1 |= sign;
  ix0 += (m <<20);
  INSERT_WORDS(z,ix0,ix1);
  return z;
}