/* * JetKVM Audio Processing Module * * Bidirectional audio processing optimized for ARM NEON SIMD: * - OUTPUT PATH: TC358743 HDMI audio → Client speakers * Pipeline: ALSA hw:0,0 capture → 2.5x gain → Opus encode (96kbps, FEC enabled) * * - INPUT PATH: Client microphone → Device speakers * Pipeline: Opus decode (with FEC) → ALSA hw:1,0 playback * * Key features: * - ARM NEON SIMD optimization for all audio operations * - Opus in-band FEC for packet loss resilience * - Ultra-low CPU usage (~0.5% on RV1106) * - S16_LE @ 48kHz stereo, 20ms frames (960 samples) */ #include #include #include #include #include #include #include // ARM NEON SIMD support (always available on JetKVM's ARM Cortex-A7) #include #define SIMD_ALIGN __attribute__((aligned(16))) #define SIMD_PREFETCH(addr, rw, locality) __builtin_prefetch(addr, rw, locality) static int trace_logging_enabled = 0; static int simd_initialized = 0; static void simd_init_once(void) { if (simd_initialized) return; simd_initialized = 1; } // ============================================================================ // GLOBAL STATE VARIABLES // ============================================================================ // ALSA device handles static snd_pcm_t *pcm_capture_handle = NULL; // OUTPUT: TC358743 HDMI audio → client static snd_pcm_t *pcm_playback_handle = NULL; // INPUT: Client microphone → device speakers // Opus codec instances static OpusEncoder *encoder = NULL; static OpusDecoder *decoder = NULL; // Audio format (S16_LE @ 48kHz stereo) static int sample_rate = 48000; static int channels = 2; static int frame_size = 960; // 20ms frames at 48kHz // Opus encoder settings (optimized for minimal CPU ~0.5% on RV1106) static int opus_bitrate = 96000; // 96 kbps - good quality/bandwidth balance static int opus_complexity = 1; // Complexity 1 - minimal CPU usage static int opus_vbr = 1; // Variable bitrate enabled static int opus_vbr_constraint = 1; // Constrained VBR - predictable bandwidth static int opus_signal_type = -1000; // OPUS_AUTO - automatic signal type detection static int opus_bandwidth = 1103; // OPUS_BANDWIDTH_WIDEBAND (50-8000 Hz) static int opus_dtx = 0; // DTX disabled - no discontinuous transmission static int opus_lsb_depth = 16; // 16-bit depth - matches S16_LE format // Network configuration static int max_packet_size = 1500; // ALSA retry configuration static int sleep_microseconds = 1000; static int max_attempts_global = 5; static int max_backoff_us_global = 500000; // ALSA buffer configuration (not currently used - kept for future optimization) static const int optimized_buffer_size = 1; // ============================================================================ // FUNCTION DECLARATIONS // ============================================================================ int jetkvm_audio_capture_init(); void jetkvm_audio_capture_close(); int jetkvm_audio_read_encode(void *opus_buf); int jetkvm_audio_playback_init(); void jetkvm_audio_playback_close(); int jetkvm_audio_decode_write(void *opus_buf, int opus_size); void update_audio_constants(int bitrate, int complexity, int vbr, int vbr_constraint, int signal_type, int bandwidth, int dtx, int lsb_depth, int sr, int ch, int fs, int max_pkt, int sleep_us, int max_attempts, int max_backoff); void set_trace_logging(int enabled); int update_opus_encoder_params(int bitrate, int complexity, int vbr, int vbr_constraint, int signal_type, int bandwidth, int dtx); // ============================================================================ // CONFIGURATION FUNCTIONS // ============================================================================ /** * Sync configuration from Go to C */ void update_audio_constants(int bitrate, int complexity, int vbr, int vbr_constraint, int signal_type, int bandwidth, int dtx, int lsb_depth, int sr, int ch, int fs, int max_pkt, int sleep_us, int max_attempts, int max_backoff) { opus_bitrate = bitrate; opus_complexity = complexity; opus_vbr = vbr; opus_vbr_constraint = vbr_constraint; opus_signal_type = signal_type; opus_bandwidth = bandwidth; opus_dtx = dtx; opus_lsb_depth = lsb_depth; sample_rate = sr; channels = ch; frame_size = fs; max_packet_size = max_pkt; sleep_microseconds = sleep_us; max_attempts_global = max_attempts; max_backoff_us_global = max_backoff; } /** * Enable/disable trace logging (zero overhead when disabled) */ void set_trace_logging(int enabled) { trace_logging_enabled = enabled; } // ============================================================================ // SIMD-OPTIMIZED BUFFER OPERATIONS (ARM NEON) // ============================================================================ /** * Clear audio buffer using NEON (8 samples/iteration) * @param buffer Audio buffer to clear * @param samples Number of samples to zero out */ static inline void simd_clear_samples_s16(short *buffer, int samples) { simd_init_once(); int simd_samples = samples & ~7; const int16x8_t zero = vdupq_n_s16(0); // SIMD path: zero 8 samples per iteration for (int i = 0; i < simd_samples; i += 8) { vst1q_s16(&buffer[i], zero); } // Scalar path: handle remaining samples for (int i = simd_samples; i < samples; i++) { buffer[i] = 0; } } /** * Apply gain using NEON Q15 fixed-point math (8 samples/iteration) * Uses vqrdmulhq_s16 for single-instruction saturating rounded multiply-high * @param samples Audio buffer to scale in-place * @param count Number of samples to process * @param volume Gain multiplier (e.g., 2.5 for 2.5x gain) */ static inline void simd_scale_volume_s16(short *samples, int count, float volume) { simd_init_once(); // Convert float gain to Q14 fixed-point for vqrdmulhq_s16 // vqrdmulhq_s16 extracts bits [30:15], so multiply by 16384 (2^14) instead of 32768 (2^15) int16_t vol_fixed = (int16_t)(volume * 16384.0f); int16x8_t vol_vec = vdupq_n_s16(vol_fixed); int simd_count = count & ~7; // SIMD path: process 8 samples per iteration for (int i = 0; i < simd_count; i += 8) { int16x8_t samples_vec = vld1q_s16(&samples[i]); int16x8_t result = vqrdmulhq_s16(samples_vec, vol_vec); vst1q_s16(&samples[i], result); } // Scalar path: handle remaining samples for (int i = simd_count; i < count; i++) { samples[i] = (short)((samples[i] * vol_fixed) >> 14); } } // ============================================================================ // INITIALIZATION STATE TRACKING // ============================================================================ static volatile int capture_initializing = 0; static volatile int capture_initialized = 0; static volatile int playback_initializing = 0; static volatile int playback_initialized = 0; /** * Update Opus encoder settings at runtime (does NOT modify FEC settings) * Note: FEC configuration remains unchanged - set at initialization * @return 0 on success, -1 if not initialized, >0 if some settings failed */ int update_opus_encoder_params(int bitrate, int complexity, int vbr, int vbr_constraint, int signal_type, int bandwidth, int dtx) { if (!encoder || !capture_initialized) { return -1; } // Update global configuration variables opus_bitrate = bitrate; opus_complexity = complexity; opus_vbr = vbr; opus_vbr_constraint = vbr_constraint; opus_signal_type = signal_type; opus_bandwidth = bandwidth; opus_dtx = dtx; // Apply settings to encoder (FEC settings not modified) int result = 0; result |= opus_encoder_ctl(encoder, OPUS_SET_BITRATE(opus_bitrate)); result |= opus_encoder_ctl(encoder, OPUS_SET_COMPLEXITY(opus_complexity)); result |= opus_encoder_ctl(encoder, OPUS_SET_VBR(opus_vbr)); result |= opus_encoder_ctl(encoder, OPUS_SET_VBR_CONSTRAINT(opus_vbr_constraint)); result |= opus_encoder_ctl(encoder, OPUS_SET_SIGNAL(opus_signal_type)); result |= opus_encoder_ctl(encoder, OPUS_SET_BANDWIDTH(opus_bandwidth)); result |= opus_encoder_ctl(encoder, OPUS_SET_DTX(opus_dtx)); return result; } // ============================================================================ // ALSA UTILITY FUNCTIONS // ============================================================================ /** * Open ALSA device with exponential backoff retry * @return 0 on success, negative error code on failure */ static int safe_alsa_open(snd_pcm_t **handle, const char *device, snd_pcm_stream_t stream) { int attempt = 0; int err; int backoff_us = sleep_microseconds; while (attempt < max_attempts_global) { err = snd_pcm_open(handle, device, stream, SND_PCM_NONBLOCK); if (err >= 0) { snd_pcm_nonblock(*handle, 0); return 0; } attempt++; if (err == -EBUSY || err == -EAGAIN) { usleep(backoff_us); backoff_us = (backoff_us * 2 < max_backoff_us_global) ? backoff_us * 2 : max_backoff_us_global; } else if (err == -ENODEV || err == -ENOENT) { usleep(backoff_us * 2); backoff_us = (backoff_us * 2 < max_backoff_us_global) ? backoff_us * 2 : max_backoff_us_global; } else if (err == -EPERM || err == -EACCES) { usleep(backoff_us / 2); } else { usleep(backoff_us); backoff_us = (backoff_us * 2 < max_backoff_us_global) ? backoff_us * 2 : max_backoff_us_global; } } return err; } /** * Configure ALSA device (S16_LE @ 48kHz stereo with optimized buffering) * @param handle ALSA PCM handle * @param device_name Unused (for debugging only) * @return 0 on success, negative error code on failure */ static int configure_alsa_device(snd_pcm_t *handle, const char *device_name) { snd_pcm_hw_params_t *params; snd_pcm_sw_params_t *sw_params; int err; if (!handle) return -1; snd_pcm_hw_params_alloca(¶ms); snd_pcm_sw_params_alloca(&sw_params); err = snd_pcm_hw_params_any(handle, params); if (err < 0) return err; err = snd_pcm_hw_params_set_access(handle, params, SND_PCM_ACCESS_RW_INTERLEAVED); if (err < 0) return err; err = snd_pcm_hw_params_set_format(handle, params, SND_PCM_FORMAT_S16_LE); if (err < 0) return err; err = snd_pcm_hw_params_set_channels(handle, params, channels); if (err < 0) return err; err = snd_pcm_hw_params_set_rate(handle, params, sample_rate, 0); if (err < 0) { unsigned int rate = sample_rate; err = snd_pcm_hw_params_set_rate_near(handle, params, &rate, 0); if (err < 0) return err; } snd_pcm_uframes_t period_size = optimized_buffer_size ? frame_size : frame_size / 2; if (period_size < 64) period_size = 64; err = snd_pcm_hw_params_set_period_size_near(handle, params, &period_size, 0); if (err < 0) return err; snd_pcm_uframes_t buffer_size = optimized_buffer_size ? period_size * 2 : period_size * 4; err = snd_pcm_hw_params_set_buffer_size_near(handle, params, &buffer_size); if (err < 0) return err; err = snd_pcm_hw_params(handle, params); if (err < 0) return err; err = snd_pcm_sw_params_current(handle, sw_params); if (err < 0) return err; err = snd_pcm_sw_params_set_start_threshold(handle, sw_params, period_size); if (err < 0) return err; err = snd_pcm_sw_params_set_avail_min(handle, sw_params, period_size); if (err < 0) return err; err = snd_pcm_sw_params(handle, sw_params); if (err < 0) return err; return snd_pcm_prepare(handle); } // ============================================================================ // AUDIO OUTPUT PATH FUNCTIONS (TC358743 HDMI Audio → Client Speakers) // ============================================================================ /** * Initialize OUTPUT path (TC358743 HDMI capture → Opus encoder) * Opens hw:0,0 (TC358743) and creates Opus encoder with optimized settings * @return 0 on success, -EBUSY if initializing, -1/-2/-3 on errors */ int jetkvm_audio_capture_init() { int err; simd_init_once(); if (__sync_bool_compare_and_swap(&capture_initializing, 0, 1) == 0) { return -EBUSY; } if (capture_initialized) { capture_initializing = 0; return 0; } if (encoder) { opus_encoder_destroy(encoder); encoder = NULL; } if (pcm_capture_handle) { snd_pcm_close(pcm_capture_handle); pcm_capture_handle = NULL; } err = safe_alsa_open(&pcm_capture_handle, "hw:0,0", SND_PCM_STREAM_CAPTURE); if (err < 0) { capture_initializing = 0; return -1; } err = configure_alsa_device(pcm_capture_handle, "capture"); if (err < 0) { snd_pcm_close(pcm_capture_handle); pcm_capture_handle = NULL; capture_initializing = 0; return -2; } int opus_err = 0; encoder = opus_encoder_create(sample_rate, channels, OPUS_APPLICATION_AUDIO, &opus_err); if (!encoder || opus_err != OPUS_OK) { if (pcm_capture_handle) { snd_pcm_close(pcm_capture_handle); pcm_capture_handle = NULL; } capture_initializing = 0; return -3; } // Configure encoder with optimized settings opus_encoder_ctl(encoder, OPUS_SET_BITRATE(opus_bitrate)); opus_encoder_ctl(encoder, OPUS_SET_COMPLEXITY(opus_complexity)); opus_encoder_ctl(encoder, OPUS_SET_VBR(opus_vbr)); opus_encoder_ctl(encoder, OPUS_SET_VBR_CONSTRAINT(opus_vbr_constraint)); opus_encoder_ctl(encoder, OPUS_SET_SIGNAL(opus_signal_type)); opus_encoder_ctl(encoder, OPUS_SET_BANDWIDTH(opus_bandwidth)); opus_encoder_ctl(encoder, OPUS_SET_DTX(opus_dtx)); opus_encoder_ctl(encoder, OPUS_SET_LSB_DEPTH(opus_lsb_depth)); // Enable in-band FEC (Forward Error Correction) for network resilience // Embeds redundant data in packets to recover from packet loss (adds ~2-5% bitrate overhead) opus_encoder_ctl(encoder, OPUS_SET_INBAND_FEC(1)); opus_encoder_ctl(encoder, OPUS_SET_PACKET_LOSS_PERC(10)); // Optimize for 10% expected loss capture_initialized = 1; capture_initializing = 0; return 0; } /** * Read HDMI audio, encode to Opus (OUTPUT path hot function) * Processing pipeline: ALSA capture → 2.5x gain → Opus encode * @param opus_buf Output buffer for encoded Opus packet * @return >0 = Opus packet size in bytes, -1 = error */ __attribute__((hot)) int jetkvm_audio_read_encode(void * __restrict__ opus_buf) { // Static buffers persist across calls for better cache locality static short SIMD_ALIGN pcm_buffer[1920]; // 960 frames × 2 channels // Local variables unsigned char * __restrict__ out = (unsigned char*)opus_buf; int pcm_rc; int err = 0; int recovery_attempts = 0; const int max_recovery_attempts = 3; int nb_bytes; // Prefetch output buffer for write SIMD_PREFETCH(out, 1, 3); SIMD_PREFETCH(pcm_buffer, 0, 3); if (__builtin_expect(!capture_initialized || !pcm_capture_handle || !encoder || !opus_buf, 0)) { if (trace_logging_enabled) { printf("[AUDIO_OUTPUT] jetkvm_audio_read_encode: Failed safety checks - capture_initialized=%d, pcm_capture_handle=%p, encoder=%p, opus_buf=%p\n", capture_initialized, pcm_capture_handle, encoder, opus_buf); } return -1; } retry_read: // Read 960 frames (20ms) from ALSA capture device pcm_rc = snd_pcm_readi(pcm_capture_handle, pcm_buffer, frame_size); if (__builtin_expect(pcm_rc < 0, 0)) { if (pcm_rc == -EPIPE) { recovery_attempts++; if (recovery_attempts > max_recovery_attempts) { return -1; } err = snd_pcm_prepare(pcm_capture_handle); if (err < 0) { snd_pcm_drop(pcm_capture_handle); err = snd_pcm_prepare(pcm_capture_handle); if (err < 0) return -1; } goto retry_read; } else if (pcm_rc == -EAGAIN) { return 0; } else if (pcm_rc == -ESTRPIPE) { recovery_attempts++; if (recovery_attempts > max_recovery_attempts) { return -1; } int resume_attempts = 0; while ((err = snd_pcm_resume(pcm_capture_handle)) == -EAGAIN && resume_attempts < 10) { usleep(sleep_microseconds); resume_attempts++; } if (err < 0) { err = snd_pcm_prepare(pcm_capture_handle); if (err < 0) return -1; } return 0; } else if (pcm_rc == -ENODEV) { return -1; } else if (pcm_rc == -EIO) { recovery_attempts++; if (recovery_attempts <= max_recovery_attempts) { snd_pcm_drop(pcm_capture_handle); err = snd_pcm_prepare(pcm_capture_handle); if (err >= 0) { goto retry_read; } } return -1; } else { recovery_attempts++; if (recovery_attempts <= 1 && pcm_rc == -EINTR) { goto retry_read; } else if (recovery_attempts <= 1 && pcm_rc == -EBUSY) { usleep(sleep_microseconds / 2); goto retry_read; } return -1; } } // Zero-pad if we got a short read if (__builtin_expect(pcm_rc < frame_size, 0)) { int remaining_samples = (frame_size - pcm_rc) * channels; simd_clear_samples_s16(&pcm_buffer[pcm_rc * channels], remaining_samples); } // Apply 2.5x gain boost to prevent quantization noise at low volumes // HDMI audio typically transmitted at -6 to -12dB; boost prevents Opus noise floor artifacts simd_scale_volume_s16(pcm_buffer, frame_size * channels, 2.5f); // Encode PCM to Opus (20ms frame → ~200 bytes at 96kbps) nb_bytes = opus_encode(encoder, pcm_buffer, frame_size, out, max_packet_size); if (trace_logging_enabled && nb_bytes > 0) { printf("[AUDIO_OUTPUT] jetkvm_audio_read_encode: Successfully encoded %d PCM frames to %d Opus bytes\n", pcm_rc, nb_bytes); } return nb_bytes; } // ============================================================================ // AUDIO INPUT PATH FUNCTIONS (Client Microphone → Device Speakers) // ============================================================================ /** * Initialize INPUT path (Opus decoder → device speakers) * Opens hw:1,0 (USB gadget) or "default" and creates Opus decoder * @return 0 on success, -EBUSY if initializing, -1/-2 on errors */ int jetkvm_audio_playback_init() { int err; simd_init_once(); if (__sync_bool_compare_and_swap(&playback_initializing, 0, 1) == 0) { return -EBUSY; } if (playback_initialized) { playback_initializing = 0; return 0; } if (decoder) { opus_decoder_destroy(decoder); decoder = NULL; } if (pcm_playback_handle) { snd_pcm_close(pcm_playback_handle); pcm_playback_handle = NULL; } err = safe_alsa_open(&pcm_playback_handle, "hw:1,0", SND_PCM_STREAM_PLAYBACK); if (err < 0) { err = safe_alsa_open(&pcm_playback_handle, "default", SND_PCM_STREAM_PLAYBACK); if (err < 0) { playback_initializing = 0; return -1; } } err = configure_alsa_device(pcm_playback_handle, "playback"); if (err < 0) { snd_pcm_close(pcm_playback_handle); pcm_playback_handle = NULL; playback_initializing = 0; return -1; } int opus_err = 0; decoder = opus_decoder_create(sample_rate, channels, &opus_err); if (!decoder || opus_err != OPUS_OK) { snd_pcm_close(pcm_playback_handle); pcm_playback_handle = NULL; playback_initializing = 0; return -2; } playback_initialized = 1; playback_initializing = 0; return 0; } /** * Decode Opus, write to device speakers (INPUT path hot function) * Processing pipeline: Opus decode (with FEC) → ALSA playback with error recovery * @param opus_buf Encoded Opus packet from client * @param opus_size Size of Opus packet in bytes * @return >0 = PCM frames written, 0 = frame skipped, -1/-2 = error */ __attribute__((hot)) int jetkvm_audio_decode_write(void * __restrict__ opus_buf, int opus_size) { // Static buffer persists across calls for better cache locality static short SIMD_ALIGN pcm_buffer[1920]; // 960 frames × 2 channels // Local variables unsigned char * __restrict__ in = (unsigned char*)opus_buf; int pcm_frames; int pcm_rc; int err = 0; int recovery_attempts = 0; const int max_recovery_attempts = 3; // Prefetch input buffer for read SIMD_PREFETCH(in, 0, 3); if (__builtin_expect(!playback_initialized || !pcm_playback_handle || !decoder || !opus_buf || opus_size <= 0, 0)) { if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Failed safety checks - playback_initialized=%d, pcm_playback_handle=%p, decoder=%p, opus_buf=%p, opus_size=%d\n", playback_initialized, pcm_playback_handle, decoder, opus_buf, opus_size); } return -1; } if (opus_size > max_packet_size) { if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Opus packet too large - size=%d, max=%d\n", opus_size, max_packet_size); } return -1; } if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Processing Opus packet - size=%d bytes\n", opus_size); } // Decode Opus packet to PCM (FEC automatically applied if embedded in packet) // decode_fec=0 means normal decode (FEC data is used automatically when present) pcm_frames = opus_decode(decoder, in, opus_size, pcm_buffer, frame_size, 0); if (__builtin_expect(pcm_frames < 0, 0)) { // Decode failed - attempt packet loss concealment using FEC from previous packet if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Opus decode failed with error %d, attempting packet loss concealment\n", pcm_frames); } // decode_fec=1 means use FEC data from the NEXT packet to reconstruct THIS lost packet pcm_frames = opus_decode(decoder, NULL, 0, pcm_buffer, frame_size, 1); if (pcm_frames < 0) { if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Packet loss concealment also failed with error %d\n", pcm_frames); } return -1; } if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Packet loss concealment succeeded, recovered %d frames\n", pcm_frames); } } else if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Opus decode successful - decoded %d PCM frames\n", pcm_frames); } retry_write: // Write decoded PCM to ALSA playback device pcm_rc = snd_pcm_writei(pcm_playback_handle, pcm_buffer, pcm_frames); if (__builtin_expect(pcm_rc < 0, 0)) { if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: ALSA write failed with error %d (%s), attempt %d/%d\n", pcm_rc, snd_strerror(pcm_rc), recovery_attempts + 1, max_recovery_attempts); } if (pcm_rc == -EPIPE) { recovery_attempts++; if (recovery_attempts > max_recovery_attempts) { if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Buffer underrun recovery failed after %d attempts\n", max_recovery_attempts); } return -2; } if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Buffer underrun detected, attempting recovery (attempt %d)\n", recovery_attempts); } err = snd_pcm_prepare(pcm_playback_handle); if (err < 0) { if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: snd_pcm_prepare failed (%s), trying drop+prepare\n", snd_strerror(err)); } snd_pcm_drop(pcm_playback_handle); err = snd_pcm_prepare(pcm_playback_handle); if (err < 0) { if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: drop+prepare recovery failed (%s)\n", snd_strerror(err)); } return -2; } } if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Buffer underrun recovery successful, retrying write\n"); } goto retry_write; } else if (pcm_rc == -ESTRPIPE) { recovery_attempts++; if (recovery_attempts > max_recovery_attempts) { if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Device suspend recovery failed after %d attempts\n", max_recovery_attempts); } return -2; } if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Device suspended, attempting resume (attempt %d)\n", recovery_attempts); } int resume_attempts = 0; while ((err = snd_pcm_resume(pcm_playback_handle)) == -EAGAIN && resume_attempts < 10) { usleep(sleep_microseconds); resume_attempts++; } if (err < 0) { if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Device resume failed (%s), trying prepare fallback\n", snd_strerror(err)); } err = snd_pcm_prepare(pcm_playback_handle); if (err < 0) { if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Prepare fallback failed (%s)\n", snd_strerror(err)); } return -2; } } if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Device suspend recovery successful, skipping frame\n"); } return 0; } else if (pcm_rc == -ENODEV) { if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Device disconnected (ENODEV) - critical error\n"); } return -2; } else if (pcm_rc == -EIO) { recovery_attempts++; if (recovery_attempts <= max_recovery_attempts) { if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: I/O error detected, attempting recovery\n"); } snd_pcm_drop(pcm_playback_handle); err = snd_pcm_prepare(pcm_playback_handle); if (err >= 0) { if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: I/O error recovery successful, retrying write\n"); } goto retry_write; } if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: I/O error recovery failed (%s)\n", snd_strerror(err)); } } return -2; } else if (pcm_rc == -EAGAIN) { recovery_attempts++; if (recovery_attempts <= max_recovery_attempts) { if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Device not ready (EAGAIN), waiting and retrying\n"); } snd_pcm_wait(pcm_playback_handle, sleep_microseconds / 4000); goto retry_write; } if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Device not ready recovery failed after %d attempts\n", max_recovery_attempts); } return -2; } else { recovery_attempts++; if (recovery_attempts <= 1 && (pcm_rc == -EINTR || pcm_rc == -EBUSY)) { if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Transient error %d (%s), retrying once\n", pcm_rc, snd_strerror(pcm_rc)); } usleep(sleep_microseconds / 2); goto retry_write; } if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Unrecoverable error %d (%s)\n", pcm_rc, snd_strerror(pcm_rc)); } return -2; } } if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Successfully wrote %d PCM frames to device\n", pcm_frames); } return pcm_frames; } // ============================================================================ // CLEANUP FUNCTIONS // ============================================================================ /** * Close INPUT path (thread-safe with drain) */ void jetkvm_audio_playback_close() { while (playback_initializing) { usleep(sleep_microseconds); } if (__sync_bool_compare_and_swap(&playback_initialized, 1, 0) == 0) { return; } if (decoder) { opus_decoder_destroy(decoder); decoder = NULL; } if (pcm_playback_handle) { snd_pcm_drain(pcm_playback_handle); snd_pcm_close(pcm_playback_handle); pcm_playback_handle = NULL; } } /** * Close OUTPUT path (thread-safe with drain) */ void jetkvm_audio_capture_close() { while (capture_initializing) { usleep(sleep_microseconds); } if (__sync_bool_compare_and_swap(&capture_initialized, 1, 0) == 0) { return; } if (encoder) { opus_encoder_destroy(encoder); encoder = NULL; } if (pcm_capture_handle) { snd_pcm_drain(pcm_capture_handle); snd_pcm_close(pcm_capture_handle); pcm_capture_handle = NULL; } }