/* * JetKVM Audio Processing Module * * Bidirectional audio processing optimized for ARM NEON SIMD: * - OUTPUT PATH: TC358743 HDMI audio → Client speakers * Pipeline: ALSA hw:0,0 capture → Opus encode (128kbps, FEC enabled) * * - INPUT PATH: Client microphone → Device speakers * Pipeline: Opus decode (with FEC) → ALSA hw:1,0 playback * * Key features: * - ARM NEON SIMD optimization for all audio operations * - Opus in-band FEC for packet loss resilience * - S16_LE @ 48kHz stereo, 20ms frames (960 samples) */ #include #include #include #include #include #include #include #include #include #include // ARM NEON SIMD support (always available on JetKVM's ARM Cortex-A7) #include // RV1106 (Cortex-A7) has 64-byte cache lines #define CACHE_LINE_SIZE 64 #define SIMD_ALIGN __attribute__((aligned(16))) #define CACHE_ALIGN __attribute__((aligned(CACHE_LINE_SIZE))) #define SIMD_PREFETCH(addr, rw, locality) __builtin_prefetch(addr, rw, locality) // Compile-time trace logging - disabled for production (zero overhead) #define TRACE_LOG(...) ((void)0) // ALSA device handles static snd_pcm_t *pcm_capture_handle = NULL; // OUTPUT: TC358743 HDMI audio → client static snd_pcm_t *pcm_playback_handle = NULL; // INPUT: Client microphone → device speakers // ALSA device names static const char *alsa_capture_device = NULL; static const char *alsa_playback_device = NULL; // Opus codec instances static OpusEncoder *encoder = NULL; static OpusDecoder *decoder = NULL; // Audio format (S16_LE @ 48kHz stereo) static uint32_t sample_rate = 48000; static uint8_t channels = 2; static uint16_t frame_size = 960; // 20ms frames at 48kHz static uint32_t opus_bitrate = 128000; static uint8_t opus_complexity = 2; static uint16_t max_packet_size = 1500; // Opus encoder constants (hardcoded for production) #define OPUS_VBR 1 // VBR enabled #define OPUS_VBR_CONSTRAINT 0 // Unconstrained VBR (better for low-volume signals) #define OPUS_SIGNAL_TYPE 3002 // OPUS_SIGNAL_MUSIC (better transient handling) #define OPUS_BANDWIDTH 1105 // OPUS_BANDWIDTH_FULLBAND (20kHz, enabled by 128kbps bitrate) #define OPUS_DTX 0 // DTX disabled (prevents audio drops) #define OPUS_LSB_DEPTH 16 // 16-bit depth // ALSA retry configuration static uint32_t sleep_microseconds = 1000; static uint32_t sleep_milliseconds = 1; // Precomputed: sleep_microseconds / 1000 static uint8_t max_attempts_global = 5; static uint32_t max_backoff_us_global = 500000; int jetkvm_audio_capture_init(); void jetkvm_audio_capture_close(); int jetkvm_audio_read_encode(void *opus_buf); int jetkvm_audio_playback_init(); void jetkvm_audio_playback_close(); int jetkvm_audio_decode_write(void *opus_buf, int opus_size); void update_audio_constants(uint32_t bitrate, uint8_t complexity, uint32_t sr, uint8_t ch, uint16_t fs, uint16_t max_pkt, uint32_t sleep_us, uint8_t max_attempts, uint32_t max_backoff); void update_audio_decoder_constants(uint32_t sr, uint8_t ch, uint16_t fs, uint16_t max_pkt, uint32_t sleep_us, uint8_t max_attempts, uint32_t max_backoff); int update_opus_encoder_params(uint32_t bitrate, uint8_t complexity); /** * Sync encoder configuration from Go to C */ void update_audio_constants(uint32_t bitrate, uint8_t complexity, uint32_t sr, uint8_t ch, uint16_t fs, uint16_t max_pkt, uint32_t sleep_us, uint8_t max_attempts, uint32_t max_backoff) { opus_bitrate = bitrate; opus_complexity = complexity; sample_rate = sr; channels = ch; frame_size = fs; max_packet_size = max_pkt; sleep_microseconds = sleep_us; sleep_milliseconds = sleep_us / 1000; // Precompute for snd_pcm_wait max_attempts_global = max_attempts; max_backoff_us_global = max_backoff; } /** * Sync decoder configuration from Go to C (no encoder-only params) */ void update_audio_decoder_constants(uint32_t sr, uint8_t ch, uint16_t fs, uint16_t max_pkt, uint32_t sleep_us, uint8_t max_attempts, uint32_t max_backoff) { sample_rate = sr; channels = ch; frame_size = fs; max_packet_size = max_pkt; sleep_microseconds = sleep_us; sleep_milliseconds = sleep_us / 1000; // Precompute for snd_pcm_wait max_attempts_global = max_attempts; max_backoff_us_global = max_backoff; } /** * Initialize ALSA device names from environment variables * Must be called before jetkvm_audio_capture_init or jetkvm_audio_playback_init */ static void init_alsa_devices_from_env(void) { if (alsa_capture_device == NULL) { alsa_capture_device = getenv("ALSA_CAPTURE_DEVICE"); if (alsa_capture_device == NULL || alsa_capture_device[0] == '\0') { alsa_capture_device = "hw:0,0"; // Default to HDMI } } if (alsa_playback_device == NULL) { alsa_playback_device = getenv("ALSA_PLAYBACK_DEVICE"); if (alsa_playback_device == NULL || alsa_playback_device[0] == '\0') { alsa_playback_device = "hw:1,0"; // Default to USB gadget } } } // SIMD-OPTIMIZED BUFFER OPERATIONS (ARM NEON) /** * Clear audio buffer using NEON (16 samples/iteration with 2x unrolling) */ static inline void simd_clear_samples_s16(short * __restrict__ buffer, uint32_t samples) { const int16x8_t zero = vdupq_n_s16(0); uint32_t i = 0; // Process 16 samples at a time (2x unrolled for better pipeline utilization) uint32_t simd_samples = samples & ~15U; for (; i < simd_samples; i += 16) { vst1q_s16(&buffer[i], zero); vst1q_s16(&buffer[i + 8], zero); } // Handle remaining 8 samples if (i + 8 <= samples) { vst1q_s16(&buffer[i], zero); i += 8; } // Scalar: remaining samples for (; i < samples; i++) { buffer[i] = 0; } } // INITIALIZATION STATE TRACKING static volatile sig_atomic_t capture_initializing = 0; static volatile sig_atomic_t capture_initialized = 0; static volatile sig_atomic_t playback_initializing = 0; static volatile sig_atomic_t playback_initialized = 0; /** * Update Opus encoder settings at runtime (does NOT modify FEC or hardcoded settings) * @return 0 on success, -1 if not initialized, >0 if some settings failed */ int update_opus_encoder_params(uint32_t bitrate, uint8_t complexity) { if (!encoder || !capture_initialized) { return -1; } // Update runtime-configurable parameters opus_bitrate = bitrate; opus_complexity = complexity; // Apply settings to encoder int result = 0; result |= opus_encoder_ctl(encoder, OPUS_SET_BITRATE(opus_bitrate)); result |= opus_encoder_ctl(encoder, OPUS_SET_COMPLEXITY(opus_complexity)); return result; } // ALSA UTILITY FUNCTIONS /** * Open ALSA device with exponential backoff retry * @return 0 on success, negative error code on failure */ // Helper: High-precision sleep using nanosleep (better than usleep) static inline void precise_sleep_us(uint32_t microseconds) { struct timespec ts = { .tv_sec = microseconds / 1000000, .tv_nsec = (microseconds % 1000000) * 1000 }; nanosleep(&ts, NULL); } static int safe_alsa_open(snd_pcm_t **handle, const char *device, snd_pcm_stream_t stream) { uint8_t attempt = 0; int err; uint32_t backoff_us = sleep_microseconds; while (attempt < max_attempts_global) { err = snd_pcm_open(handle, device, stream, SND_PCM_NONBLOCK); if (err >= 0) { snd_pcm_nonblock(*handle, 0); return 0; } attempt++; // Exponential backoff with bit shift (faster than multiplication) if (err == -EBUSY || err == -EAGAIN) { precise_sleep_us(backoff_us); backoff_us = (backoff_us << 1 < max_backoff_us_global) ? (backoff_us << 1) : max_backoff_us_global; } else if (err == -ENODEV || err == -ENOENT) { precise_sleep_us(backoff_us << 1); backoff_us = (backoff_us << 1 < max_backoff_us_global) ? (backoff_us << 1) : max_backoff_us_global; } else if (err == -EPERM || err == -EACCES) { precise_sleep_us(backoff_us >> 1); } else { precise_sleep_us(backoff_us); backoff_us = (backoff_us << 1 < max_backoff_us_global) ? (backoff_us << 1) : max_backoff_us_global; } } return err; } /** * Configure ALSA device (S16_LE @ 48kHz stereo with optimized buffering) * @param handle ALSA PCM handle * @param device_name Unused (for debugging only) * @return 0 on success, negative error code on failure */ static int configure_alsa_device(snd_pcm_t *handle, const char *device_name) { snd_pcm_hw_params_t *params; snd_pcm_sw_params_t *sw_params; int err; if (!handle) return -1; snd_pcm_hw_params_alloca(¶ms); snd_pcm_sw_params_alloca(&sw_params); err = snd_pcm_hw_params_any(handle, params); if (err < 0) return err; err = snd_pcm_hw_params_set_access(handle, params, SND_PCM_ACCESS_RW_INTERLEAVED); if (err < 0) return err; err = snd_pcm_hw_params_set_format(handle, params, SND_PCM_FORMAT_S16_LE); if (err < 0) return err; err = snd_pcm_hw_params_set_channels(handle, params, channels); if (err < 0) return err; err = snd_pcm_hw_params_set_rate(handle, params, sample_rate, 0); if (err < 0) { unsigned int rate = sample_rate; err = snd_pcm_hw_params_set_rate_near(handle, params, &rate, 0); if (err < 0) return err; } snd_pcm_uframes_t period_size = frame_size; // Optimized: use full frame as period if (period_size < 64) period_size = 64; err = snd_pcm_hw_params_set_period_size_near(handle, params, &period_size, 0); if (err < 0) return err; snd_pcm_uframes_t buffer_size = period_size * 2; // Optimized: minimal buffer for low latency err = snd_pcm_hw_params_set_buffer_size_near(handle, params, &buffer_size); if (err < 0) return err; err = snd_pcm_hw_params(handle, params); if (err < 0) return err; err = snd_pcm_sw_params_current(handle, sw_params); if (err < 0) return err; err = snd_pcm_sw_params_set_start_threshold(handle, sw_params, period_size); if (err < 0) return err; err = snd_pcm_sw_params_set_avail_min(handle, sw_params, period_size); if (err < 0) return err; err = snd_pcm_sw_params(handle, sw_params); if (err < 0) return err; return snd_pcm_prepare(handle); } // AUDIO OUTPUT PATH FUNCTIONS (TC358743 HDMI Audio → Client Speakers) /** * Initialize OUTPUT path (TC358743 HDMI capture → Opus encoder) * Opens hw:0,0 (TC358743) and creates Opus encoder with optimized settings * @return 0 on success, -EBUSY if initializing, -1/-2/-3 on errors */ int jetkvm_audio_capture_init() { int err; init_alsa_devices_from_env(); if (__sync_bool_compare_and_swap(&capture_initializing, 0, 1) == 0) { return -EBUSY; } if (capture_initialized) { capture_initializing = 0; return 0; } if (encoder) { opus_encoder_destroy(encoder); encoder = NULL; } if (pcm_capture_handle) { snd_pcm_close(pcm_capture_handle); pcm_capture_handle = NULL; } err = safe_alsa_open(&pcm_capture_handle, alsa_capture_device, SND_PCM_STREAM_CAPTURE); if (err < 0) { fprintf(stderr, "Failed to open ALSA capture device %s: %s\n", alsa_capture_device, snd_strerror(err)); fflush(stderr); capture_initializing = 0; return -1; } err = configure_alsa_device(pcm_capture_handle, "capture"); if (err < 0) { snd_pcm_close(pcm_capture_handle); pcm_capture_handle = NULL; capture_initializing = 0; return -2; } int opus_err = 0; encoder = opus_encoder_create(sample_rate, channels, OPUS_APPLICATION_AUDIO, &opus_err); if (!encoder || opus_err != OPUS_OK) { if (pcm_capture_handle) { snd_pcm_close(pcm_capture_handle); pcm_capture_handle = NULL; } capture_initializing = 0; return -3; } // Configure encoder with optimized settings opus_encoder_ctl(encoder, OPUS_SET_BITRATE(opus_bitrate)); opus_encoder_ctl(encoder, OPUS_SET_COMPLEXITY(opus_complexity)); opus_encoder_ctl(encoder, OPUS_SET_VBR(OPUS_VBR)); opus_encoder_ctl(encoder, OPUS_SET_VBR_CONSTRAINT(OPUS_VBR_CONSTRAINT)); opus_encoder_ctl(encoder, OPUS_SET_SIGNAL(OPUS_SIGNAL_TYPE)); opus_encoder_ctl(encoder, OPUS_SET_BANDWIDTH(OPUS_BANDWIDTH)); opus_encoder_ctl(encoder, OPUS_SET_DTX(OPUS_DTX)); opus_encoder_ctl(encoder, OPUS_SET_LSB_DEPTH(OPUS_LSB_DEPTH)); opus_encoder_ctl(encoder, OPUS_SET_INBAND_FEC(1)); opus_encoder_ctl(encoder, OPUS_SET_PACKET_LOSS_PERC(20)); capture_initialized = 1; capture_initializing = 0; return 0; } /** * Read HDMI audio, encode to Opus (OUTPUT path hot function) * @param opus_buf Output buffer for encoded Opus packet * @return >0 = Opus packet size in bytes, -1 = error */ __attribute__((hot)) int jetkvm_audio_read_encode(void * __restrict__ opus_buf) { static short CACHE_ALIGN pcm_buffer[960 * 2]; // Cache-aligned unsigned char * __restrict__ out = (unsigned char*)opus_buf; int32_t pcm_rc, nb_bytes; int32_t err = 0; uint8_t recovery_attempts = 0; const uint8_t max_recovery_attempts = 3; // Prefetch for write (out) and read (pcm_buffer) - RV1106 has small L1 cache SIMD_PREFETCH(out, 1, 0); // Write, immediate use SIMD_PREFETCH(pcm_buffer, 0, 0); // Read, immediate use SIMD_PREFETCH(pcm_buffer + 64, 0, 1); // Prefetch next cache line if (__builtin_expect(!capture_initialized || !pcm_capture_handle || !encoder || !opus_buf, 0)) { TRACE_LOG("[AUDIO_OUTPUT] jetkvm_audio_read_encode: Failed safety checks - capture_initialized=%d, pcm_capture_handle=%p, encoder=%p, opus_buf=%p\n", capture_initialized, pcm_capture_handle, encoder, opus_buf); return -1; } retry_read: // Read 960 frames (20ms) from ALSA capture device pcm_rc = snd_pcm_readi(pcm_capture_handle, pcm_buffer, frame_size); if (__builtin_expect(pcm_rc < 0, 0)) { if (pcm_rc == -EPIPE) { recovery_attempts++; if (recovery_attempts > max_recovery_attempts) { return -1; } err = snd_pcm_prepare(pcm_capture_handle); if (err < 0) { snd_pcm_drop(pcm_capture_handle); err = snd_pcm_prepare(pcm_capture_handle); if (err < 0) return -1; } goto retry_read; } else if (pcm_rc == -EAGAIN) { // Wait for data to be available snd_pcm_wait(pcm_capture_handle, sleep_milliseconds); goto retry_read; } else if (pcm_rc == -ESTRPIPE) { recovery_attempts++; if (recovery_attempts > max_recovery_attempts) { return -1; } uint8_t resume_attempts = 0; while ((err = snd_pcm_resume(pcm_capture_handle)) == -EAGAIN && resume_attempts < 10) { snd_pcm_wait(pcm_capture_handle, sleep_milliseconds); resume_attempts++; } if (err < 0) { err = snd_pcm_prepare(pcm_capture_handle); if (err < 0) return -1; } return 0; } else if (pcm_rc == -ENODEV) { return -1; } else if (pcm_rc == -EIO) { recovery_attempts++; if (recovery_attempts <= max_recovery_attempts) { snd_pcm_drop(pcm_capture_handle); err = snd_pcm_prepare(pcm_capture_handle); if (err >= 0) { goto retry_read; } } return -1; } else { recovery_attempts++; if (recovery_attempts <= 1 && pcm_rc == -EINTR) { goto retry_read; } else if (recovery_attempts <= 1 && pcm_rc == -EBUSY) { snd_pcm_wait(pcm_capture_handle, 1); // Wait 1ms for device goto retry_read; } return -1; } } // Zero-pad if we got a short read if (__builtin_expect(pcm_rc < frame_size, 0)) { uint32_t remaining_samples = (frame_size - pcm_rc) * channels; simd_clear_samples_s16(&pcm_buffer[pcm_rc * channels], remaining_samples); } // Find peak amplitude with NEON SIMD uint32_t total_samples = frame_size * channels; int16x8_t vmax = vdupq_n_s16(0); uint32_t i; for (i = 0; i + 8 <= total_samples; i += 8) { int16x8_t v = vld1q_s16(&pcm_buffer[i]); int16x8_t vabs = vabsq_s16(v); vmax = vmaxq_s16(vmax, vabs); } // Horizontal max reduction (manual for ARMv7) int16x4_t vmax_low = vget_low_s16(vmax); int16x4_t vmax_high = vget_high_s16(vmax); int16x4_t vmax_reduced = vmax_s16(vmax_low, vmax_high); vmax_reduced = vpmax_s16(vmax_reduced, vmax_reduced); vmax_reduced = vpmax_s16(vmax_reduced, vmax_reduced); int16_t peak = vget_lane_s16(vmax_reduced, 0); // Handle remaining samples for (; i < total_samples; i++) { int16_t abs_val = (pcm_buffer[i] < 0) ? -pcm_buffer[i] : pcm_buffer[i]; if (abs_val > peak) peak = abs_val; } // Apply gain if signal is weak (below -18dB = 4096) for best quality // Target: boost to ~50% of range (16384) to improve SNR if (peak > 0 && peak < 4096) { float gain = 16384.0f / peak; if (gain > 8.0f) gain = 8.0f; // Max 18dB boost for best quality // Apply gain with NEON and saturation float32x4_t vgain = vdupq_n_f32(gain); for (i = 0; i + 8 <= total_samples; i += 8) { int16x8_t v = vld1q_s16(&pcm_buffer[i]); // Convert to float, apply gain, saturate back to int16 int32x4_t v_low = vmovl_s16(vget_low_s16(v)); int32x4_t v_high = vmovl_s16(vget_high_s16(v)); float32x4_t f_low = vcvtq_f32_s32(v_low); float32x4_t f_high = vcvtq_f32_s32(v_high); f_low = vmulq_f32(f_low, vgain); f_high = vmulq_f32(f_high, vgain); v_low = vcvtq_s32_f32(f_low); v_high = vcvtq_s32_f32(f_high); // Saturate to int16 range int16x4_t result_low = vqmovn_s32(v_low); int16x4_t result_high = vqmovn_s32(v_high); vst1q_s16(&pcm_buffer[i], vcombine_s16(result_low, result_high)); } // Handle remaining samples for (; i < total_samples; i++) { int32_t boosted = (int32_t)(pcm_buffer[i] * gain); if (boosted > 32767) boosted = 32767; if (boosted < -32768) boosted = -32768; pcm_buffer[i] = (int16_t)boosted; } } nb_bytes = opus_encode(encoder, pcm_buffer, frame_size, out, max_packet_size); return nb_bytes; } // AUDIO INPUT PATH FUNCTIONS (Client Microphone → Device Speakers) /** * Initialize INPUT path (Opus decoder → device speakers) * Opens hw:1,0 (USB gadget) or "default" and creates Opus decoder * @return 0 on success, -EBUSY if initializing, -1/-2 on errors */ int jetkvm_audio_playback_init() { int err; init_alsa_devices_from_env(); if (__sync_bool_compare_and_swap(&playback_initializing, 0, 1) == 0) { return -EBUSY; } if (playback_initialized) { playback_initializing = 0; return 0; } if (decoder) { opus_decoder_destroy(decoder); decoder = NULL; } if (pcm_playback_handle) { snd_pcm_close(pcm_playback_handle); pcm_playback_handle = NULL; } err = safe_alsa_open(&pcm_playback_handle, alsa_playback_device, SND_PCM_STREAM_PLAYBACK); if (err < 0) { fprintf(stderr, "Failed to open ALSA playback device %s: %s\n", alsa_playback_device, snd_strerror(err)); fflush(stderr); err = safe_alsa_open(&pcm_playback_handle, "default", SND_PCM_STREAM_PLAYBACK); if (err < 0) { playback_initializing = 0; return -1; } } err = configure_alsa_device(pcm_playback_handle, "playback"); if (err < 0) { snd_pcm_close(pcm_playback_handle); pcm_playback_handle = NULL; playback_initializing = 0; return -1; } int opus_err = 0; decoder = opus_decoder_create(sample_rate, channels, &opus_err); if (!decoder || opus_err != OPUS_OK) { snd_pcm_close(pcm_playback_handle); pcm_playback_handle = NULL; playback_initializing = 0; return -2; } playback_initialized = 1; playback_initializing = 0; return 0; } /** * Decode Opus, write to device speakers (INPUT path hot function) * Processing pipeline: Opus decode (with FEC) → ALSA playback with error recovery * @param opus_buf Encoded Opus packet from client * @param opus_size Size of Opus packet in bytes * @return >0 = PCM frames written, 0 = frame skipped, -1/-2 = error */ __attribute__((hot)) int jetkvm_audio_decode_write(void * __restrict__ opus_buf, int32_t opus_size) { static short CACHE_ALIGN pcm_buffer[960 * 2]; // Cache-aligned unsigned char * __restrict__ in = (unsigned char*)opus_buf; int32_t pcm_frames, pcm_rc, err = 0; uint8_t recovery_attempts = 0; const uint8_t max_recovery_attempts = 3; // Prefetch input buffer - locality 0 for immediate use SIMD_PREFETCH(in, 0, 0); if (__builtin_expect(!playback_initialized || !pcm_playback_handle || !decoder || !opus_buf || opus_size <= 0, 0)) { TRACE_LOG("[AUDIO_INPUT] jetkvm_audio_decode_write: Failed safety checks - playback_initialized=%d, pcm_playback_handle=%p, decoder=%p, opus_buf=%p, opus_size=%d\n", playback_initialized, pcm_playback_handle, decoder, opus_buf, opus_size); return -1; } if (opus_size > max_packet_size) { TRACE_LOG("[AUDIO_INPUT] jetkvm_audio_decode_write: Opus packet too large - size=%d, max=%d\n", opus_size, max_packet_size); return -1; } TRACE_LOG("[AUDIO_INPUT] jetkvm_audio_decode_write: Processing Opus packet - size=%d bytes\n", opus_size); // Decode Opus packet to PCM (FEC automatically applied if embedded in packet) // decode_fec=0 means normal decode (FEC data is used automatically when present) pcm_frames = opus_decode(decoder, in, opus_size, pcm_buffer, frame_size, 0); if (__builtin_expect(pcm_frames < 0, 0)) { // Decode failed - attempt packet loss concealment using FEC from previous packet TRACE_LOG("[AUDIO_INPUT] jetkvm_audio_decode_write: Opus decode failed with error %d, attempting packet loss concealment\n", pcm_frames); // decode_fec=1 means use FEC data from the NEXT packet to reconstruct THIS lost packet pcm_frames = opus_decode(decoder, NULL, 0, pcm_buffer, frame_size, 1); if (pcm_frames < 0) { TRACE_LOG("[AUDIO_INPUT] jetkvm_audio_decode_write: Packet loss concealment also failed with error %d\n", pcm_frames); return -1; } TRACE_LOG("[AUDIO_INPUT] jetkvm_audio_decode_write: Packet loss concealment succeeded, recovered %d frames\n", pcm_frames); } else TRACE_LOG("[AUDIO_INPUT] jetkvm_audio_decode_write: Opus decode successful - decoded %d PCM frames\n", pcm_frames); retry_write: // Write decoded PCM to ALSA playback device pcm_rc = snd_pcm_writei(pcm_playback_handle, pcm_buffer, pcm_frames); if (__builtin_expect(pcm_rc < 0, 0)) { TRACE_LOG("[AUDIO_INPUT] jetkvm_audio_decode_write: ALSA write failed with error %d (%s), attempt %d/%d\n", pcm_rc, snd_strerror(pcm_rc), recovery_attempts + 1, max_recovery_attempts); if (pcm_rc == -EPIPE) { recovery_attempts++; if (recovery_attempts > max_recovery_attempts) { TRACE_LOG("[AUDIO_INPUT] jetkvm_audio_decode_write: Buffer underrun recovery failed after %d attempts\n", max_recovery_attempts); return -2; } TRACE_LOG("[AUDIO_INPUT] jetkvm_audio_decode_write: Buffer underrun detected, attempting recovery (attempt %d)\n", recovery_attempts); err = snd_pcm_prepare(pcm_playback_handle); if (err < 0) { TRACE_LOG("[AUDIO_INPUT] jetkvm_audio_decode_write: snd_pcm_prepare failed (%s), trying drop+prepare\n", snd_strerror(err)); snd_pcm_drop(pcm_playback_handle); err = snd_pcm_prepare(pcm_playback_handle); if (err < 0) { TRACE_LOG("[AUDIO_INPUT] jetkvm_audio_decode_write: drop+prepare recovery failed (%s)\n", snd_strerror(err)); return -2; } } TRACE_LOG("[AUDIO_INPUT] jetkvm_audio_decode_write: Buffer underrun recovery successful, retrying write\n"); goto retry_write; } else if (pcm_rc == -ESTRPIPE) { recovery_attempts++; if (recovery_attempts > max_recovery_attempts) { TRACE_LOG("[AUDIO_INPUT] jetkvm_audio_decode_write: Device suspend recovery failed after %d attempts\n", max_recovery_attempts); return -2; } TRACE_LOG("[AUDIO_INPUT] jetkvm_audio_decode_write: Device suspended, attempting resume (attempt %d)\n", recovery_attempts); uint8_t resume_attempts = 0; while ((err = snd_pcm_resume(pcm_playback_handle)) == -EAGAIN && resume_attempts < 10) { snd_pcm_wait(pcm_playback_handle, sleep_milliseconds); resume_attempts++; } if (err < 0) { TRACE_LOG("[AUDIO_INPUT] jetkvm_audio_decode_write: Device resume failed (%s), trying prepare fallback\n", snd_strerror(err)); err = snd_pcm_prepare(pcm_playback_handle); if (err < 0) { TRACE_LOG("[AUDIO_INPUT] jetkvm_audio_decode_write: Prepare fallback failed (%s)\n", snd_strerror(err)); return -2; } } TRACE_LOG("[AUDIO_INPUT] jetkvm_audio_decode_write: Device suspend recovery successful, skipping frame\n"); return 0; } else if (pcm_rc == -ENODEV) { TRACE_LOG("[AUDIO_INPUT] jetkvm_audio_decode_write: Device disconnected (ENODEV) - critical error\n"); return -2; } else if (pcm_rc == -EIO) { recovery_attempts++; if (recovery_attempts <= max_recovery_attempts) { TRACE_LOG("[AUDIO_INPUT] jetkvm_audio_decode_write: I/O error detected, attempting recovery\n"); snd_pcm_drop(pcm_playback_handle); err = snd_pcm_prepare(pcm_playback_handle); if (err >= 0) { TRACE_LOG("[AUDIO_INPUT] jetkvm_audio_decode_write: I/O error recovery successful, retrying write\n"); goto retry_write; } TRACE_LOG("[AUDIO_INPUT] jetkvm_audio_decode_write: I/O error recovery failed (%s)\n", snd_strerror(err)); } return -2; } else if (pcm_rc == -EAGAIN) { recovery_attempts++; if (recovery_attempts <= max_recovery_attempts) { TRACE_LOG("[AUDIO_INPUT] jetkvm_audio_decode_write: Device not ready (EAGAIN), waiting and retrying\n"); snd_pcm_wait(pcm_playback_handle, 1); // Wait 1ms goto retry_write; } TRACE_LOG("[AUDIO_INPUT] jetkvm_audio_decode_write: Device not ready recovery failed after %d attempts\n", max_recovery_attempts); return -2; } else { recovery_attempts++; if (recovery_attempts <= 1 && (pcm_rc == -EINTR || pcm_rc == -EBUSY)) { TRACE_LOG("[AUDIO_INPUT] jetkvm_audio_decode_write: Transient error %d (%s), retrying once\n", pcm_rc, snd_strerror(pcm_rc)); snd_pcm_wait(pcm_playback_handle, 1); // Wait 1ms goto retry_write; } TRACE_LOG("[AUDIO_INPUT] jetkvm_audio_decode_write: Unrecoverable error %d (%s)\n", pcm_rc, snd_strerror(pcm_rc)); return -2; } } TRACE_LOG("[AUDIO_INPUT] jetkvm_audio_decode_write: Successfully wrote %d PCM frames to device\n", pcm_frames); return pcm_frames; } // CLEANUP FUNCTIONS /** * Close INPUT path (thread-safe with drain) */ void jetkvm_audio_playback_close() { while (playback_initializing) { sched_yield(); } if (__sync_bool_compare_and_swap(&playback_initialized, 1, 0) == 0) { return; } if (decoder) { opus_decoder_destroy(decoder); decoder = NULL; } if (pcm_playback_handle) { snd_pcm_drain(pcm_playback_handle); snd_pcm_close(pcm_playback_handle); pcm_playback_handle = NULL; } } /** * Close OUTPUT path (thread-safe with drain) */ void jetkvm_audio_capture_close() { while (capture_initializing) { sched_yield(); } if (__sync_bool_compare_and_swap(&capture_initialized, 1, 0) == 0) { return; } if (encoder) { opus_encoder_destroy(encoder); encoder = NULL; } if (pcm_capture_handle) { snd_pcm_drain(pcm_capture_handle); snd_pcm_close(pcm_capture_handle); pcm_capture_handle = NULL; } }