/* * JetKVM Audio Processing Module * * This module handles bidirectional audio processing for JetKVM: * - Audio INPUT: Client microphone → Device speakers (decode Opus → ALSA playback) * - Audio OUTPUT: TC358743 HDMI audio → Client speakers (ALSA capture → encode Opus) */ #include #include #include #include #include #include #include // ARM NEON SIMD support (always available on JetKVM's ARM Cortex-A7) #include #define SIMD_ALIGN __attribute__((aligned(16))) #define SIMD_PREFETCH(addr, rw, locality) __builtin_prefetch(addr, rw, locality) static int trace_logging_enabled = 0; static int simd_initialized = 0; static void simd_init_once(void) { if (simd_initialized) return; simd_initialized = 1; } // ============================================================================ // GLOBAL STATE VARIABLES // ============================================================================ // ALSA device handles static snd_pcm_t *pcm_capture_handle = NULL; // OUTPUT: TC358743 HDMI audio → client static snd_pcm_t *pcm_playback_handle = NULL; // INPUT: Client microphone → device speakers // Opus codec instances static OpusEncoder *encoder = NULL; static OpusDecoder *decoder = NULL; // Audio format (S16_LE @ 48kHz stereo) static int sample_rate = 48000; static int channels = 2; static int frame_size = 960; // 20ms frames at 48kHz // Opus encoder settings (optimized for minimal CPU ~0.5% on RV1106) static int opus_bitrate = 96000; // 96 kbps static int opus_complexity = 1; // Complexity 1 (minimal CPU) static int opus_vbr = 1; // Variable bitrate enabled static int opus_vbr_constraint = 1; // Constrained VBR for predictable bandwidth static int opus_signal_type = -1000; // OPUS_AUTO (-1000) static int opus_bandwidth = 1103; // OPUS_BANDWIDTH_WIDEBAND (1103) static int opus_dtx = 0; // DTX disabled static int opus_lsb_depth = 16; // 16-bit depth matches S16_LE // Network configuration static int max_packet_size = 1500; // ALSA retry configuration static int sleep_microseconds = 1000; static int max_attempts_global = 5; static int max_backoff_us_global = 500000; // Buffer optimization (1 = use 2-period ultra-low latency, 0 = use 4-period balanced) static const int optimized_buffer_size = 1; // ============================================================================ // FUNCTION DECLARATIONS // ============================================================================ int jetkvm_audio_capture_init(); void jetkvm_audio_capture_close(); int jetkvm_audio_read_encode(void *opus_buf); int jetkvm_audio_playback_init(); void jetkvm_audio_playback_close(); int jetkvm_audio_decode_write(void *opus_buf, int opus_size); void update_audio_constants(int bitrate, int complexity, int vbr, int vbr_constraint, int signal_type, int bandwidth, int dtx, int lsb_depth, int sr, int ch, int fs, int max_pkt, int sleep_us, int max_attempts, int max_backoff); void set_trace_logging(int enabled); int update_opus_encoder_params(int bitrate, int complexity, int vbr, int vbr_constraint, int signal_type, int bandwidth, int dtx); // ============================================================================ // CONFIGURATION FUNCTIONS // ============================================================================ /** * Sync configuration from Go to C */ void update_audio_constants(int bitrate, int complexity, int vbr, int vbr_constraint, int signal_type, int bandwidth, int dtx, int lsb_depth, int sr, int ch, int fs, int max_pkt, int sleep_us, int max_attempts, int max_backoff) { opus_bitrate = bitrate; opus_complexity = complexity; opus_vbr = vbr; opus_vbr_constraint = vbr_constraint; opus_signal_type = signal_type; opus_bandwidth = bandwidth; opus_dtx = dtx; opus_lsb_depth = lsb_depth; sample_rate = sr; channels = ch; frame_size = fs; max_packet_size = max_pkt; sleep_microseconds = sleep_us; max_attempts_global = max_attempts; max_backoff_us_global = max_backoff; } /** * Enable/disable trace logging (zero overhead when disabled) */ void set_trace_logging(int enabled) { trace_logging_enabled = enabled; } // ============================================================================ // SIMD-OPTIMIZED BUFFER OPERATIONS (ARM NEON) // ============================================================================ /** * Clear audio buffer using NEON (8 samples/iteration) */ static inline void simd_clear_samples_s16(short *buffer, int samples) { simd_init_once(); const int16x8_t zero = vdupq_n_s16(0); int simd_samples = samples & ~7; for (int i = 0; i < simd_samples; i += 8) { vst1q_s16(&buffer[i], zero); } for (int i = simd_samples; i < samples; i++) { buffer[i] = 0; } } /** * Interleave L/R channels using NEON (8 frames/iteration) */ static inline void simd_interleave_stereo_s16(const short *left, const short *right, short *output, int frames) { simd_init_once(); int simd_frames = frames & ~7; for (int i = 0; i < simd_frames; i += 8) { int16x8_t left_vec = vld1q_s16(&left[i]); int16x8_t right_vec = vld1q_s16(&right[i]); int16x8x2_t interleaved = vzipq_s16(left_vec, right_vec); vst1q_s16(&output[i * 2], interleaved.val[0]); vst1q_s16(&output[i * 2 + 8], interleaved.val[1]); } for (int i = simd_frames; i < frames; i++) { output[i * 2] = left[i]; output[i * 2 + 1] = right[i]; } } /** * Apply gain using NEON Q15 fixed-point math (8 samples/iteration) */ static inline void simd_scale_volume_s16(short *samples, int count, float volume) { simd_init_once(); int16_t vol_fixed = (int16_t)(volume * 32767.0f); int16x8_t vol_vec = vdupq_n_s16(vol_fixed); int simd_count = count & ~7; for (int i = 0; i < simd_count; i += 8) { int16x8_t samples_vec = vld1q_s16(&samples[i]); int32x4_t low_result = vmull_s16(vget_low_s16(samples_vec), vget_low_s16(vol_vec)); int32x4_t high_result = vmull_s16(vget_high_s16(samples_vec), vget_high_s16(vol_vec)); int16x4_t low_narrow = vshrn_n_s32(low_result, 15); int16x4_t high_narrow = vshrn_n_s32(high_result, 15); int16x8_t result = vcombine_s16(low_narrow, high_narrow); vst1q_s16(&samples[i], result); } for (int i = simd_count; i < count; i++) { samples[i] = (short)((samples[i] * vol_fixed) >> 15); } } /** * Byte-swap 16-bit samples using NEON (8 samples/iteration) */ static inline void simd_swap_endian_s16(short *samples, int count) { int simd_count = count & ~7; for (int i = 0; i < simd_count; i += 8) { uint16x8_t samples_vec = vld1q_u16((uint16_t*)&samples[i]); uint8x16_t samples_u8 = vreinterpretq_u8_u16(samples_vec); uint8x16_t swapped_u8 = vrev16q_u8(samples_u8); uint16x8_t swapped = vreinterpretq_u16_u8(swapped_u8); vst1q_u16((uint16_t*)&samples[i], swapped); } for (int i = simd_count; i < count; i++) { samples[i] = __builtin_bswap16(samples[i]); } } /** * Convert S16 to float using NEON (4 samples/iteration) */ static inline void simd_s16_to_float(const short *input, float *output, int count) { const float scale = 1.0f / 32768.0f; float32x4_t scale_vec = vdupq_n_f32(scale); int simd_count = count & ~3; for (int i = 0; i < simd_count; i += 4) { int16x4_t s16_data = vld1_s16(input + i); int32x4_t s32_data = vmovl_s16(s16_data); float32x4_t float_data = vcvtq_f32_s32(s32_data); float32x4_t scaled = vmulq_f32(float_data, scale_vec); vst1q_f32(output + i, scaled); } for (int i = simd_count; i < count; i++) { output[i] = (float)input[i] * scale; } } /** * Convert float to S16 using NEON (4 samples/iteration) */ static inline void simd_float_to_s16(const float *input, short *output, int count) { const float scale = 32767.0f; float32x4_t scale_vec = vdupq_n_f32(scale); int simd_count = count & ~3; for (int i = 0; i < simd_count; i += 4) { float32x4_t float_data = vld1q_f32(input + i); float32x4_t scaled = vmulq_f32(float_data, scale_vec); int32x4_t s32_data = vcvtq_s32_f32(scaled); int16x4_t s16_data = vqmovn_s32(s32_data); vst1_s16(output + i, s16_data); } for (int i = simd_count; i < count; i++) { float scaled = input[i] * scale; output[i] = (short)__builtin_fmaxf(__builtin_fminf(scaled, 32767.0f), -32768.0f); } } /** * Mono → stereo (duplicate samples) using NEON (4 frames/iteration) */ static inline void simd_mono_to_stereo_s16(const short *mono, short *stereo, int frames) { int simd_frames = frames & ~3; for (int i = 0; i < simd_frames; i += 4) { int16x4_t mono_data = vld1_s16(mono + i); int16x4x2_t stereo_data = {mono_data, mono_data}; vst2_s16(stereo + i * 2, stereo_data); } for (int i = simd_frames; i < frames; i++) { stereo[i * 2] = mono[i]; stereo[i * 2 + 1] = mono[i]; } } /** * Stereo → mono (average L+R) using NEON (4 frames/iteration) */ static inline void simd_stereo_to_mono_s16(const short *stereo, short *mono, int frames) { int simd_frames = frames & ~3; for (int i = 0; i < simd_frames; i += 4) { int16x4x2_t stereo_data = vld2_s16(stereo + i * 2); int32x4_t left_wide = vmovl_s16(stereo_data.val[0]); int32x4_t right_wide = vmovl_s16(stereo_data.val[1]); int32x4_t sum = vaddq_s32(left_wide, right_wide); int32x4_t avg = vshrq_n_s32(sum, 1); int16x4_t mono_data = vqmovn_s32(avg); vst1_s16(mono + i, mono_data); } for (int i = simd_frames; i < frames; i++) { mono[i] = (stereo[i * 2] + stereo[i * 2 + 1]) / 2; } } /** * Apply L/R balance using NEON (4 frames/iteration) */ static inline void simd_apply_stereo_balance_s16(short *stereo, int frames, float balance) { float left_gain = balance <= 0.0f ? 1.0f : 1.0f - balance; float right_gain = balance >= 0.0f ? 1.0f : 1.0f + balance; float32x4_t left_gain_vec = vdupq_n_f32(left_gain); float32x4_t right_gain_vec = vdupq_n_f32(right_gain); int simd_frames = frames & ~3; for (int i = 0; i < simd_frames; i += 4) { int16x4x2_t stereo_data = vld2_s16(stereo + i * 2); int32x4_t left_wide = vmovl_s16(stereo_data.val[0]); int32x4_t right_wide = vmovl_s16(stereo_data.val[1]); float32x4_t left_float = vcvtq_f32_s32(left_wide); float32x4_t right_float = vcvtq_f32_s32(right_wide); left_float = vmulq_f32(left_float, left_gain_vec); right_float = vmulq_f32(right_float, right_gain_vec); int32x4_t left_result = vcvtq_s32_f32(left_float); int32x4_t right_result = vcvtq_s32_f32(right_float); stereo_data.val[0] = vqmovn_s32(left_result); stereo_data.val[1] = vqmovn_s32(right_result); vst2_s16(stereo + i * 2, stereo_data); } for (int i = simd_frames; i < frames; i++) { stereo[i * 2] = (short)(stereo[i * 2] * left_gain); stereo[i * 2 + 1] = (short)(stereo[i * 2 + 1] * right_gain); } } /** * Deinterleave stereo → L/R channels using NEON (4 frames/iteration) */ static inline void simd_deinterleave_stereo_s16(const short *interleaved, short *left, short *right, int frames) { int simd_frames = frames & ~3; for (int i = 0; i < simd_frames; i += 4) { int16x4x2_t stereo_data = vld2_s16(interleaved + i * 2); vst1_s16(left + i, stereo_data.val[0]); vst1_s16(right + i, stereo_data.val[1]); } for (int i = simd_frames; i < frames; i++) { left[i] = interleaved[i * 2]; right[i] = interleaved[i * 2 + 1]; } } /** * Find max absolute sample value for silence detection using NEON (8 samples/iteration) * Used to detect silence (threshold < 50 = ~0.15% max volume) */ static inline short simd_find_max_abs_s16(const short *samples, int count) { int16x8_t max_vec = vdupq_n_s16(0); int simd_count = count & ~7; for (int i = 0; i < simd_count; i += 8) { int16x8_t samples_vec = vld1q_s16(&samples[i]); int16x8_t abs_vec = vabsq_s16(samples_vec); max_vec = vmaxq_s16(max_vec, abs_vec); } int16x4_t max_half = vmax_s16(vget_low_s16(max_vec), vget_high_s16(max_vec)); int16x4_t max_folded = vpmax_s16(max_half, max_half); max_folded = vpmax_s16(max_folded, max_folded); short max_sample = vget_lane_s16(max_folded, 0); for (int i = simd_count; i < count; i++) { short abs_sample = samples[i] < 0 ? -samples[i] : samples[i]; if (abs_sample > max_sample) { max_sample = abs_sample; } } return max_sample; } // ============================================================================ // INITIALIZATION STATE TRACKING // ============================================================================ static volatile int capture_initializing = 0; static volatile int capture_initialized = 0; static volatile int playback_initializing = 0; static volatile int playback_initialized = 0; /** * Update Opus encoder settings at runtime * @return 0 on success, -1 if not initialized, >0 if some settings failed */ int update_opus_encoder_params(int bitrate, int complexity, int vbr, int vbr_constraint, int signal_type, int bandwidth, int dtx) { if (!encoder || !capture_initialized) { return -1; } opus_bitrate = bitrate; opus_complexity = complexity; opus_vbr = vbr; opus_vbr_constraint = vbr_constraint; opus_signal_type = signal_type; opus_bandwidth = bandwidth; opus_dtx = dtx; int result = 0; result |= opus_encoder_ctl(encoder, OPUS_SET_BITRATE(opus_bitrate)); result |= opus_encoder_ctl(encoder, OPUS_SET_COMPLEXITY(opus_complexity)); result |= opus_encoder_ctl(encoder, OPUS_SET_VBR(opus_vbr)); result |= opus_encoder_ctl(encoder, OPUS_SET_VBR_CONSTRAINT(opus_vbr_constraint)); result |= opus_encoder_ctl(encoder, OPUS_SET_SIGNAL(opus_signal_type)); result |= opus_encoder_ctl(encoder, OPUS_SET_BANDWIDTH(opus_bandwidth)); result |= opus_encoder_ctl(encoder, OPUS_SET_DTX(opus_dtx)); return result; } // ============================================================================ // ALSA UTILITY FUNCTIONS // ============================================================================ /** * Open ALSA device with exponential backoff retry * @return 0 on success, negative error code on failure */ static int safe_alsa_open(snd_pcm_t **handle, const char *device, snd_pcm_stream_t stream) { int attempt = 0; int err; int backoff_us = sleep_microseconds; while (attempt < max_attempts_global) { err = snd_pcm_open(handle, device, stream, SND_PCM_NONBLOCK); if (err >= 0) { snd_pcm_nonblock(*handle, 0); return 0; } attempt++; if (err == -EBUSY || err == -EAGAIN) { usleep(backoff_us); backoff_us = (backoff_us * 2 < max_backoff_us_global) ? backoff_us * 2 : max_backoff_us_global; } else if (err == -ENODEV || err == -ENOENT) { usleep(backoff_us * 2); backoff_us = (backoff_us * 2 < max_backoff_us_global) ? backoff_us * 2 : max_backoff_us_global; } else if (err == -EPERM || err == -EACCES) { usleep(backoff_us / 2); } else { usleep(backoff_us); backoff_us = (backoff_us * 2 < max_backoff_us_global) ? backoff_us * 2 : max_backoff_us_global; } } return err; } /** * Configure ALSA device (S16_LE @ 48kHz stereo with optimized buffering) * @param handle ALSA PCM handle * @param device_name Unused (for debugging only) * @return 0 on success, negative error code on failure */ static int configure_alsa_device(snd_pcm_t *handle, const char *device_name) { snd_pcm_hw_params_t *params; snd_pcm_sw_params_t *sw_params; int err; if (!handle) return -1; snd_pcm_hw_params_alloca(¶ms); snd_pcm_sw_params_alloca(&sw_params); err = snd_pcm_hw_params_any(handle, params); if (err < 0) return err; err = snd_pcm_hw_params_set_access(handle, params, SND_PCM_ACCESS_RW_INTERLEAVED); if (err < 0) return err; err = snd_pcm_hw_params_set_format(handle, params, SND_PCM_FORMAT_S16_LE); if (err < 0) return err; err = snd_pcm_hw_params_set_channels(handle, params, channels); if (err < 0) return err; err = snd_pcm_hw_params_set_rate(handle, params, sample_rate, 0); if (err < 0) { unsigned int rate = sample_rate; err = snd_pcm_hw_params_set_rate_near(handle, params, &rate, 0); if (err < 0) return err; } snd_pcm_uframes_t period_size = optimized_buffer_size ? frame_size : frame_size / 2; if (period_size < 64) period_size = 64; err = snd_pcm_hw_params_set_period_size_near(handle, params, &period_size, 0); if (err < 0) return err; snd_pcm_uframes_t buffer_size = optimized_buffer_size ? period_size * 2 : period_size * 4; err = snd_pcm_hw_params_set_buffer_size_near(handle, params, &buffer_size); if (err < 0) return err; err = snd_pcm_hw_params(handle, params); if (err < 0) return err; err = snd_pcm_sw_params_current(handle, sw_params); if (err < 0) return err; err = snd_pcm_sw_params_set_start_threshold(handle, sw_params, period_size); if (err < 0) return err; err = snd_pcm_sw_params_set_avail_min(handle, sw_params, period_size); if (err < 0) return err; err = snd_pcm_sw_params(handle, sw_params); if (err < 0) return err; return snd_pcm_prepare(handle); } // ============================================================================ // AUDIO OUTPUT PATH FUNCTIONS (TC358743 HDMI Audio → Client Speakers) // ============================================================================ /** * Initialize OUTPUT path (TC358743 HDMI capture → Opus encoder) * Opens hw:0,0 (TC358743) and creates Opus encoder with optimized settings * @return 0 on success, -EBUSY if initializing, -1/-2/-3 on errors */ int jetkvm_audio_capture_init() { int err; simd_init_once(); if (__sync_bool_compare_and_swap(&capture_initializing, 0, 1) == 0) { return -EBUSY; } if (capture_initialized) { capture_initializing = 0; return 0; } if (encoder) { opus_encoder_destroy(encoder); encoder = NULL; } if (pcm_capture_handle) { snd_pcm_close(pcm_capture_handle); pcm_capture_handle = NULL; } err = safe_alsa_open(&pcm_capture_handle, "hw:0,0", SND_PCM_STREAM_CAPTURE); if (err < 0) { capture_initializing = 0; return -1; } err = configure_alsa_device(pcm_capture_handle, "capture"); if (err < 0) { snd_pcm_close(pcm_capture_handle); pcm_capture_handle = NULL; capture_initializing = 0; return -2; } int opus_err = 0; encoder = opus_encoder_create(sample_rate, channels, OPUS_APPLICATION_AUDIO, &opus_err); if (!encoder || opus_err != OPUS_OK) { if (pcm_capture_handle) { snd_pcm_close(pcm_capture_handle); pcm_capture_handle = NULL; } capture_initializing = 0; return -3; } opus_encoder_ctl(encoder, OPUS_SET_BITRATE(opus_bitrate)); opus_encoder_ctl(encoder, OPUS_SET_COMPLEXITY(opus_complexity)); opus_encoder_ctl(encoder, OPUS_SET_VBR(opus_vbr)); opus_encoder_ctl(encoder, OPUS_SET_VBR_CONSTRAINT(opus_vbr_constraint)); opus_encoder_ctl(encoder, OPUS_SET_SIGNAL(opus_signal_type)); opus_encoder_ctl(encoder, OPUS_SET_BANDWIDTH(opus_bandwidth)); opus_encoder_ctl(encoder, OPUS_SET_DTX(opus_dtx)); opus_encoder_ctl(encoder, OPUS_SET_LSB_DEPTH(opus_lsb_depth)); capture_initialized = 1; capture_initializing = 0; return 0; } /** * Read HDMI audio, encode to Opus (OUTPUT path hot function) * Process: ALSA capture → silence detection → 5x gain → Opus encode * @return >0 = Opus bytes, 0 = silence/no data, -1 = error */ __attribute__((hot)) int jetkvm_audio_read_encode(void * __restrict__ opus_buf) { static short SIMD_ALIGN pcm_buffer[1920]; unsigned char * __restrict__ out = (unsigned char*)opus_buf; SIMD_PREFETCH(out, 1, 3); SIMD_PREFETCH(pcm_buffer, 0, 3); int err = 0; int recovery_attempts = 0; const int max_recovery_attempts = 3; if (__builtin_expect(!capture_initialized || !pcm_capture_handle || !encoder || !opus_buf, 0)) { if (trace_logging_enabled) { printf("[AUDIO_OUTPUT] jetkvm_audio_read_encode: Failed safety checks - capture_initialized=%d, pcm_capture_handle=%p, encoder=%p, opus_buf=%p\n", capture_initialized, pcm_capture_handle, encoder, opus_buf); } return -1; } retry_read: ; int pcm_rc = snd_pcm_readi(pcm_capture_handle, pcm_buffer, frame_size); if (__builtin_expect(pcm_rc < 0, 0)) { if (pcm_rc == -EPIPE) { recovery_attempts++; if (recovery_attempts > max_recovery_attempts) { return -1; } err = snd_pcm_prepare(pcm_capture_handle); if (err < 0) { snd_pcm_drop(pcm_capture_handle); err = snd_pcm_prepare(pcm_capture_handle); if (err < 0) return -1; } goto retry_read; } else if (pcm_rc == -EAGAIN) { return 0; } else if (pcm_rc == -ESTRPIPE) { recovery_attempts++; if (recovery_attempts > max_recovery_attempts) { return -1; } int resume_attempts = 0; while ((err = snd_pcm_resume(pcm_capture_handle)) == -EAGAIN && resume_attempts < 10) { usleep(sleep_microseconds); resume_attempts++; } if (err < 0) { err = snd_pcm_prepare(pcm_capture_handle); if (err < 0) return -1; } return 0; } else if (pcm_rc == -ENODEV) { return -1; } else if (pcm_rc == -EIO) { recovery_attempts++; if (recovery_attempts <= max_recovery_attempts) { snd_pcm_drop(pcm_capture_handle); err = snd_pcm_prepare(pcm_capture_handle); if (err >= 0) { goto retry_read; } } return -1; } else { recovery_attempts++; if (recovery_attempts <= 1 && pcm_rc == -EINTR) { goto retry_read; } else if (recovery_attempts <= 1 && pcm_rc == -EBUSY) { usleep(sleep_microseconds / 2); goto retry_read; } return -1; } } if (__builtin_expect(pcm_rc < frame_size, 0)) { int remaining_samples = (frame_size - pcm_rc) * channels; simd_clear_samples_s16(&pcm_buffer[pcm_rc * channels], remaining_samples); } // Silence detection: only skip true silence (< 50 = ~0.15% of max volume) int total_samples = frame_size * channels; short max_sample = simd_find_max_abs_s16(pcm_buffer, total_samples); if (max_sample < 50) { if (trace_logging_enabled) { printf("[AUDIO_OUTPUT] jetkvm_audio_read_encode: Silence detected (max=%d), skipping frame\n", max_sample); } return 0; } // Apply moderate 2.5x gain to prevent quantization noise on transients // Balances between being audible at low volumes and not overdriving at high volumes simd_scale_volume_s16(pcm_buffer, frame_size * channels, 2.5f); int nb_bytes = opus_encode(encoder, pcm_buffer, frame_size, out, max_packet_size); if (trace_logging_enabled && nb_bytes > 0) { printf("[AUDIO_OUTPUT] jetkvm_audio_read_encode: Successfully encoded %d PCM frames to %d Opus bytes\n", pcm_rc, nb_bytes); } return nb_bytes; } // ============================================================================ // AUDIO INPUT PATH FUNCTIONS (Client Microphone → Device Speakers) // ============================================================================ /** * Initialize INPUT path (Opus decoder → device speakers) * Opens hw:1,0 (USB gadget) or "default" and creates Opus decoder * @return 0 on success, -EBUSY if initializing, -1/-2 on errors */ int jetkvm_audio_playback_init() { int err; simd_init_once(); if (__sync_bool_compare_and_swap(&playback_initializing, 0, 1) == 0) { return -EBUSY; } if (playback_initialized) { playback_initializing = 0; return 0; } if (decoder) { opus_decoder_destroy(decoder); decoder = NULL; } if (pcm_playback_handle) { snd_pcm_close(pcm_playback_handle); pcm_playback_handle = NULL; } err = safe_alsa_open(&pcm_playback_handle, "hw:1,0", SND_PCM_STREAM_PLAYBACK); if (err < 0) { err = safe_alsa_open(&pcm_playback_handle, "default", SND_PCM_STREAM_PLAYBACK); if (err < 0) { playback_initializing = 0; return -1; } } err = configure_alsa_device(pcm_playback_handle, "playback"); if (err < 0) { snd_pcm_close(pcm_playback_handle); pcm_playback_handle = NULL; playback_initializing = 0; return -1; } int opus_err = 0; decoder = opus_decoder_create(sample_rate, channels, &opus_err); if (!decoder || opus_err != OPUS_OK) { snd_pcm_close(pcm_playback_handle); pcm_playback_handle = NULL; playback_initializing = 0; return -2; } playback_initialized = 1; playback_initializing = 0; return 0; } /** * Decode Opus, write to device speakers (INPUT path hot function) * Process: Opus decode → ALSA write with packet loss concealment * @return >0 = PCM frames written, 0 = frame skipped, -1/-2 = error */ __attribute__((hot)) int jetkvm_audio_decode_write(void * __restrict__ opus_buf, int opus_size) { static short __attribute__((aligned(16))) pcm_buffer[1920]; unsigned char * __restrict__ in = (unsigned char*)opus_buf; SIMD_PREFETCH(in, 0, 3); int err = 0; int recovery_attempts = 0; const int max_recovery_attempts = 3; if (__builtin_expect(!playback_initialized || !pcm_playback_handle || !decoder || !opus_buf || opus_size <= 0, 0)) { if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Failed safety checks - playback_initialized=%d, pcm_playback_handle=%p, decoder=%p, opus_buf=%p, opus_size=%d\n", playback_initialized, pcm_playback_handle, decoder, opus_buf, opus_size); } return -1; } if (opus_size > max_packet_size) { if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Opus packet too large - size=%d, max=%d\n", opus_size, max_packet_size); } return -1; } if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Processing Opus packet - size=%d bytes\n", opus_size); } int pcm_frames = opus_decode(decoder, in, opus_size, pcm_buffer, frame_size, 0); if (__builtin_expect(pcm_frames < 0, 0)) { if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Opus decode failed with error %d, attempting packet loss concealment\n", pcm_frames); } pcm_frames = opus_decode(decoder, NULL, 0, pcm_buffer, frame_size, 0); if (pcm_frames < 0) { if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Packet loss concealment also failed with error %d\n", pcm_frames); } return -1; } if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Packet loss concealment succeeded, recovered %d frames\n", pcm_frames); } } else if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Opus decode successful - decoded %d PCM frames\n", pcm_frames); } retry_write: ; int pcm_rc = snd_pcm_writei(pcm_playback_handle, pcm_buffer, pcm_frames); if (__builtin_expect(pcm_rc < 0, 0)) { if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: ALSA write failed with error %d (%s), attempt %d/%d\n", pcm_rc, snd_strerror(pcm_rc), recovery_attempts + 1, max_recovery_attempts); } if (pcm_rc == -EPIPE) { recovery_attempts++; if (recovery_attempts > max_recovery_attempts) { if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Buffer underrun recovery failed after %d attempts\n", max_recovery_attempts); } return -2; } if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Buffer underrun detected, attempting recovery (attempt %d)\n", recovery_attempts); } err = snd_pcm_prepare(pcm_playback_handle); if (err < 0) { if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: snd_pcm_prepare failed (%s), trying drop+prepare\n", snd_strerror(err)); } snd_pcm_drop(pcm_playback_handle); err = snd_pcm_prepare(pcm_playback_handle); if (err < 0) { if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: drop+prepare recovery failed (%s)\n", snd_strerror(err)); } return -2; } } if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Buffer underrun recovery successful, retrying write\n"); } goto retry_write; } else if (pcm_rc == -ESTRPIPE) { recovery_attempts++; if (recovery_attempts > max_recovery_attempts) { if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Device suspend recovery failed after %d attempts\n", max_recovery_attempts); } return -2; } if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Device suspended, attempting resume (attempt %d)\n", recovery_attempts); } int resume_attempts = 0; while ((err = snd_pcm_resume(pcm_playback_handle)) == -EAGAIN && resume_attempts < 10) { usleep(sleep_microseconds); resume_attempts++; } if (err < 0) { if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Device resume failed (%s), trying prepare fallback\n", snd_strerror(err)); } err = snd_pcm_prepare(pcm_playback_handle); if (err < 0) { if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Prepare fallback failed (%s)\n", snd_strerror(err)); } return -2; } } if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Device suspend recovery successful, skipping frame\n"); } return 0; } else if (pcm_rc == -ENODEV) { if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Device disconnected (ENODEV) - critical error\n"); } return -2; } else if (pcm_rc == -EIO) { recovery_attempts++; if (recovery_attempts <= max_recovery_attempts) { if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: I/O error detected, attempting recovery\n"); } snd_pcm_drop(pcm_playback_handle); err = snd_pcm_prepare(pcm_playback_handle); if (err >= 0) { if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: I/O error recovery successful, retrying write\n"); } goto retry_write; } if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: I/O error recovery failed (%s)\n", snd_strerror(err)); } } return -2; } else if (pcm_rc == -EAGAIN) { recovery_attempts++; if (recovery_attempts <= max_recovery_attempts) { if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Device not ready (EAGAIN), waiting and retrying\n"); } snd_pcm_wait(pcm_playback_handle, sleep_microseconds / 4000); goto retry_write; } if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Device not ready recovery failed after %d attempts\n", max_recovery_attempts); } return -2; } else { recovery_attempts++; if (recovery_attempts <= 1 && (pcm_rc == -EINTR || pcm_rc == -EBUSY)) { if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Transient error %d (%s), retrying once\n", pcm_rc, snd_strerror(pcm_rc)); } usleep(sleep_microseconds / 2); goto retry_write; } if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Unrecoverable error %d (%s)\n", pcm_rc, snd_strerror(pcm_rc)); } return -2; } } if (trace_logging_enabled) { printf("[AUDIO_INPUT] jetkvm_audio_decode_write: Successfully wrote %d PCM frames to device\n", pcm_frames); } return pcm_frames; } // ============================================================================ // CLEANUP FUNCTIONS // ============================================================================ /** * Close INPUT path (thread-safe with drain) */ void jetkvm_audio_playback_close() { while (playback_initializing) { usleep(sleep_microseconds); } if (__sync_bool_compare_and_swap(&playback_initialized, 1, 0) == 0) { return; } if (decoder) { opus_decoder_destroy(decoder); decoder = NULL; } if (pcm_playback_handle) { snd_pcm_drain(pcm_playback_handle); snd_pcm_close(pcm_playback_handle); pcm_playback_handle = NULL; } } /** * Close OUTPUT path (thread-safe with drain) */ void jetkvm_audio_capture_close() { while (capture_initializing) { usleep(sleep_microseconds); } if (__sync_bool_compare_and_swap(&capture_initialized, 1, 0) == 0) { return; } if (encoder) { opus_encoder_destroy(encoder); encoder = NULL; } if (pcm_capture_handle) { snd_pcm_drain(pcm_capture_handle); snd_pcm_close(pcm_capture_handle); pcm_capture_handle = NULL; } }