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Anyone interested in long-boom Yagis can hardly escape encountering any number of small
equations for calculating some Yagi parameters.  I call them "rules of thumb" or approximations,
but many individuals have, from time to time, treated them as being precise methods of
determining the gain or beamwidth of a Yagi.  Because these equations have acquired a life of
their own over time, I became curious about their adequacy as a guide to Yagi performance
aspects.

The following notes will review a few of the rules of thumb by comparing the calculations with
the results of NEC-4 modeling.  Over time, I have collected many dozens of Yagi models, but
three sets have special relevance to this inquiry.  All three Yagis sets use 432 MHz as the
design frequency, all 4 uses 4-mm diameter elements, and all three form sequences.  The first
set includes DL6WU Yagis from 10 through 40 elements on booms from 2 λ to 14 λ long.  The
second group consists of Yagis optimized by Dean Straw, N6BV.  The boomlengths are virtually
the same as those in the DL6WU series for each element count.  However, the N6BV set
consists of individually optimized arrays.  The final set of test Yagis uses closer spacing and
different algorithms than the DL6WU sequence, resulting in a series from 10 to 50 elements on
booms from 1.5λ to 14.5 λ.  Fig. 1 compares the outlines of the longest members of the 3 sets
of Yagis.

This initial note will examine several rules of thumb for gain.  One collection is based on the
horizontal and vertical beamwidth of the Yagi, while another technique bases the gain
calculation on boomlength.  I shall also look at some calculations of horizontal beamwidth based
on gain and a calculation of vertical beamwidth from the horizontal beamwidth.  The collection is
far from exhaustive of the available rules of thumb, but it may be enough for a start.

Basic Yagi Performance

In the course of a study on the stacking behavior of long-boom Yagis, I gathered a considerable
mass of data on trimming Yagi series, most notably, the classic DL6WU design.  Using a set of
algorithms, the series produces designs that differ in element length and spacing only as we
add new directors.  Otherwise put, to produce a shorter Yagi, we simply trim away the most
forward directors down to the length that we want.  The program DL6WU-GG.EXE includes the



algorithms for designing almost any length Yagi from 10 elements onward.  I chose to stop at 40
elements.  The program is available from the web site maintained by Ian White, G3SEK. See
http://www.ifwtech.co.uk/g3sek.  The program actually comes in two parts zipped together.
Accompanying the DOS program is a text containing the original Basic code, as revised through
2003.  The dimensions for the set of Yagis used here appear in my notes on trimming Yagis at
my site: http://www.cebik.com/yagitrim.pdf (with the frequency sweep graphs in a separate
document, http://www.cebik.com/yagitrim2.pdf).

Table 1 provides a summary of the modeled free-space performance of the Yagis in the
DL6WU series.  Most of the data not relevant to these notes has been omitted.

The N6BV series uses the element count and the boomlength (within about 0.1 λ) of the
DL6WU wide-band Yagis.  By reducing the operating bandwidth and subjecting each Yagi to
computer optimization, N6BV created a series of individual Yagis.  The optimizing process
improves both gain and front-to-back ratio, while preserving a low 50-Ω SWR, at least within the
more restricted passband.  However, each Yagi in the sequence now has a unique set of values



for element length and spacing.  Table 2 summarizes the performance of the Yagis in the N6BV
series.

The final set of Yagis derives ultimately from a design by David Tanner, VK3AUU.  However, I
revised the element diameter and the element length algorithms to bring the frequency of
maximum gain closer to the design frequency, yielding higher gain, but somewhat lesser front-
to-sidelobe performance.  The design uses a variable spacing algorithm that grows larger with a
longer boomlength (in contrast to the constant spacing used by DL6WU Yagis from 12 elements
onward). Hence, the series runs from 10 to 50 elements.  The final algorithm for element length
does not yield a linear outline to the elements of the longest version.  Despite the more complex
curvature of the element lengths, the result is a second trimming Yagi series.  To create a
shorter Yagi, simply remove the most forward directors from the longest version until you reach
the desired boomlength.  The performance of these Yagis is also part of the data in the
documents previously noted for the DL6WU sequence.

Table 3 summarizes the relevant modeled free-space performance of the series.  The
designation "LB" abbreviates "long boom" and is not my initials.



These three tables comprise essential data for comparison with the results of the rule-of-thumb
equations.  I shall present several other tables.  Each is a continuation to the right of the first
three tables.  The nature of presentation space makes it impossible to place all the tables
together side-by-side.  More significantly, the tables contain data on enough Yagis (102) to form
a quite reasonable test of the rule-of-thumb equations.



Gain from Beamwidth

Of all of the rules of thumb, one that calculates Yagi gain from the horizontal and vertical (or,
more properly, the E-plane and H-plane) beamwidths is perhaps the most venerable.  Deriving
from Kraus, the equation has many forms.  For example, one version appears in the Beam
Antenna Handbook by Orr and Cowan, page 47.

A different version, directly attributed to Kraus, appears in the RSGB volume, The VHF/UHF DX
Book, page 7-5 (in the 2nd edition).

The version that appears in Antennas by Krause (page 99 in the 2nd edition) differs from either
of the first two versions.

All three versions use the necessary adjustments to result in gain values in dBi, facilitating
comparison with the modeled data.  In fact, the only difference among the 3 versions is the
value of the numerator.  Kraus himself notes that between the first and second editions of
Antennas, a number of individuals suggested additional (and smaller) values for the numerator,
which represents the number of square degrees such that a beam with a 1° pencil beam would
have a gain of about 46 dBi.  (Note:  360°2/π = 41,253 square degrees.)

The question at hand is how well these equations approximate the results of NEC-4 modeling.
All of the models in the previous tables use a free-space environment with aluminum elements.
Hence, all of the models provide data for the horizontal and vertical beamwidths.  They also
show a degree of loss based on the material conductivity of the elements within a parasitic
element design.

We may look at the data in two ways.  Graphically, we can crate data curves to show the
general trends, with each curve extending from the shortest to the longest Yagi in a series.
These results are useful for seeing the general properties of the information.  We may also look
at data tables to extract other information, such as the percentage of error between a calculated
and a modeled result.  Such data does not graph as well, but table scanning produces trends of
its own.  In all cases, the use of these equations rests on the initially modeled horizontal and
vertical beamwidths in the initial tables.

Fig. 2 and Table 4 provide data for the DL6WU series.  Fig. 3 and Table 5 show comparable
data for the N6BV Yagi sequence.  The test or "LB" series data appears in Fig. 4 and Table 6.





The DL6WU and test ("LB") Yagi series produce smooth curves throughout.  The N6BV series
yields somewhat more erratic curves as a function of the individualized optimization of each
Yagi in that sequence.

More significantly, the modeled performance of the Yagis in all three sets shows a lower gain
than predicted by simple application of the basic equation in any of its forms.  The RSGB and
Kraus versions differ from each other only by a small amount, but both estimate high.  Kraus
was aware of this, since the two correctives that he introduced (beam efficiency and pattern
factor) have the effect of reducing the numerator.  Indeed, he appeared to be nonplused by the
fact that numerous readers took his original equation as yielding more accurate results than
what he terms "ballpark" values (page 100).  He notes specifically that "(1) the effect of the
minor lobes is neglected, (2) the angle product may not be rigorously related to the true solid
angle of the main beam and (3) the angle product relation to the true solid angle varies
according to the type of antenna pattern involved."  The arrays under scrutiny do have
significant minor lobes, especially the first forward sidelobes in the E-plane and many of the
sidelobes in the H-plane.

The question that remains is how big a ballpark we have.  Table 4, 5, and 6, one for each Yagi
series, list the calculated gain for the array according to the 3 variations in the equation.
Accompanying these data columns is a calculation of the percentage of error in the calculation,
using the modeled gain value as the baseline.  The modeled gain appears in the earlier tables.



Note that the Kraus ballpark value is never more than 3% high for the DL6WU Yagi series in
Table 4.  In fact, it reaches its closest approach to the modeled values at 24 elements, which
corresponds to a 7.6 λ boom.  At this length, even using lossless elements would not have
raised the gain value more than 20% of the way to the Kraus equation value.  However,
accounting for the strong minor lobes of the array might well have done the job.  Although the
horizontal sidelobe rejection is not maximum at this boomlength, the vertical sidelobe rejection
(or ratio to the main lobe) is close to its peak value.

Table 5 for the N6BV series of Yagis shows a similar phenomenon, despite the more erratic set
of values resulting from individual optimizing.  The closest approach of the Kraus calculation to
the modeled results occurs at 18 elements or a boom that is 5.1 λ long.  The front-to-sidelobe
ratios for both the horizontal and vertical patterns are one step removed from their peak values.
Nevertheless, all of the equation-based results produce differentials from the modeled results
ranging from 1 to 3 percent, and all are high.  The Orr and RSGB equations yield results
proportionately higher.



The test Yagi series, in Table 6, is similar to the DL6WU series in producing the closest
approach of the Kraus-calculated gain to the modeled gain with a boomlength of 7.5 λ.  This
length corresponds to 30 elements in the series.  Unfortunately for prospective trends based on
front-to-sidelobe ratio, this element count does not produce the best values in that performance
category.

Overall, the error range for the Kraus equation relative to the modeled gain values runs from 1.5
to 5 percent, with the other equations yielding more distant results.  The DL6WU series error
values above the boomlength of closest approach tend to fluctuate in a very small way at a
value about 0.5 percent above the best value.  However, the test series shows as much as a full
percent higher error for longer booms.  Part of the variation may lie in the more complex
algorithms used for both element spacing and length.

Perhaps the variations in the three test-series results lend some credence to Kraus' own note
that " the angle product may not be rigorously related to the true solid angle of the main beam."
Still, the Kraus version of the equation does provide a reasonable ballpark value for array gain.
However, if the calculated value rests on the modeled E-plane and H-plane beamwidths, then



the equation becomes unnecessary, since the same NEC calculations yield the array gain as
well.

Gain from Boomlength

A second method of calculating gain derives from the array boomlength and appears in the final
two columns of Table 4, 5, and 6 as "BL-Eq" and "% Error."  The RSGB handbook also



presents this equation on page 7-16.  Initially specified in terms of a dBd gain value, I have
adjusted it for gain values in dBi.

Interestingly, the equation appears to come closest to modeled gain values for the shortest
boomlengths in each sequence.

The new equation appears to work best for the DL6WU series of Yagis.  This result is not
surprising, since Gunter Hoch is the listed author of the chapter in the RSGB handbook.
However, for the N6BV and the test Yagi series, the departure from modeled results grows to
between 4 and 5 percent for the longest booms (or highest element counts).  The following
graphs, beginning with the DL6WU Yagis in Fig. 5, clearly show the trends.  The N6BV series in
Fig. 6 is interesting because a boomlength-based equation produces a smooth gain curve, in
contrast to the more erratic curve yielded by the individually optimized beams when modeled.
The test-series data, graphed in Fig. 7, return the lines to a pair of smooth curves.  In all cases,
the modeled gain is higher than the calculated gain.  Unfortunately, there appears to be no
single adjustment to the equation that will satisfy all three series of modeled results.  Like the
Kraus equation, the results are ballpark values that may be most useful for shorter boomlengths
in the test sequences of Yagis.  Because the equation requires only a boomlength--either actual
or projected--as its basis and because it calculates gain on the conservative side, it may be
most useful as a preliminary planning tool.  If you need a certain gain to effect a certain
communications circuit, then using the equation will generally guarantee that a reasonable Yagi
design for the boomlength will achieve the necessary gain, with just a bit to spare





Beamwidth from Gain

The DL6WU design program (DL6WU-GG.EXE) makes use of a pair of equations to derive both
the horizontal (E-plane) and vertical (H-plane) beamwidths from the array gain.  The function of
these estimates is primarily to provide further estimates of the required spacing of beams in
horizontal and vertical stacks.  Our question is how well they match up with the modeled data
for each boomlength and element count in our 3 Yagi series.

The equation for the horizontal beamwidth uses the gain, which is adjusted for dBi in this
version.

The corresponding equation to find the vertical beamwidth uses a presumed relationship
between the horizontal and vertical beamwidths.

As we have done with the other rules of thumb, we may use both graphs and tables to note the
degree of coincidence (or non-coincidence) between calculated and modeled data.  As usual,
we begin with the DL6WU Yagi series.  See Fig. 8 and Table 7.  Of first note is the fact that we
obtain opposing trends.  The horizontal values coincide at the shortest boomlengths, while the
vertical values coincide best at the longest boomlengths.



Due to the very wide range of boomlengths, the graph may mislead us into thinking that the
divergence at the non-coincident ends of the lines is small.  The table corrects this impression
by showing the percentage of divergence.  (The modeled values of horizontal and vertical
beamwidth appear in the initial tables of modeled single unit performance.)  At the shortest
boomlengths, the vertical beamwidth is off (relative to modeled data) by nearly 5 percent.  At the
longest boomlengths, the equation yields values that are off by over 10 percent.  However, in
the middle of the range, for example, at the 25-element count, the equations are quite
satisfactory for both beamwidth values.

The superiority overall of the vertical beamwidth calculation is largely due to the fact that this
calculation uses the modeled value of horizontal beamwidth as its basis within this exercise.
The possible lack of rigor in the relationship of gain and beamwidth noted by Kraus remains
operative in the horizontal beamwidth calculation that rests on gain (the modeled value).  That
possibility gives us reason to look at the data for the other Yagi series.

The data (Table 8) for the N6BV series of Yagis in fact confirms the general trends noted for the
DL6WU Yagi series.  However, the degree of divergence between modeled and calculated



beamwidth values is not as great as in the DL6WU series.  The maximum divergence for the
vertical beamwidth is about 4.5 percent, while for horizontal beamwidth values, the divergence
grows to only about 6 percent at the longest boomlengths.

The question left by the table and Fig. 9 is whether there is a reason for the greater coincidence
between calculated and modeled values in the N6BV series.  The N6BV series consists of
individually optimized beams with a narrower operating passband, higher gain, and better
general front-to-back ratio performance than the wide-band DL6WU series.  As the early tables
of modeled gain show, the N6BV series achieves higher gain for virtually every boomlength.
However, the horizontal and vertical beamwidths in the N6BV are 16.8° and 17.2°, respectively,
values that are smaller than the corresponding 40-element values for the DL6WU series by
more than the gain differential would suggest.  The DL6WU 40-element beamwidth values are
18.4° horizontal and 18.8° vertical for a gain differential of only about 0.7 dB.





The ragged curves of the N6BV individually optimized Yagis give way to smoother curves for
the test Yagi series that covers 10 to 50 elements and boomlengths from 1.5 λ to 14.5 λ.
However, the lines in Fig. 10 tell much the same story.  The equations provide horizontal
beamwidths that are coincident with the modeled data for shorter boomlengths and vertical
beamwidths that are coincident at longer boomlengths.  The error range, shown in Table 9, is
even greater than for the DL6WU series: 6 percent for short boom vertical beamwidths and 16
percent for long boom horizontal beamwidths.



Most interestingly, the longest N6BV and the longest test series Yagis have almost the same
gain values and beamwidths.  The N6BV gain is 21.06 dBi, while the test Yagi shows 21.1 dBi.
The relevant N6BV beamwidths are 16.8° and 17.2°, while the corresponding test series values
are 16.8° and 17.0°.  If any problem exists for the horizontal beamwidth equation, it appears to
be its large shift in outcome for small changes in gain, especially as the gain value reaches
appreciable proportions.

Of course, if we use the modeled data as the basis for the gain value, then the remaining
equation-based beamwidth calculations become superfluous.  The same modeling that yields
the array gain also yields data on the horizontal and vertical beamwidths.  However, our goal
here was not to legitimize the use of the equations so much as it has been to find their nature
and limitations in terms of how well they replicate modeled behavior.  Since we would normally
use the beamwidth equations after first calculating the beam's gain apart from modeling, the
values would show greater deviation from the modeled values based on the equation used to
arrive at the gain value.  Since the first set of equations for gain rest on beamwidth values and
our latest set for beamwidth rest on gain, we cannot find a place to begin in the absence of a
NEC model.

However, we can use the second boomlength-based gain equation to see what values we
obtain.  Let's examine a single case and compare the resulting calculated values with the
modeled data.  The DL6WU 40-element Yagi uses a 14.015 λ boom.

Method Gain dBi Hor. Beamwidth Vert. Beamwidth
Modeled 20.40 18.4° 18.8°
Calculated 20.09 17.6° 17.8°

The results are quite different if we use the 40-element N6BV Yagi on its 13.95 λ boom.

Method Gain dBi Hor. Beamwidth Vert. Beamwidth
Modeled 21.06 16.8° 17.0°
Calculated 20.08 17.7° 17.9°

Because the boomlengths are so similar, the boomlength-based equation yields nearly identical
gain values, with resulting nearly identical beamwidth values.  However, the N6BV calculated
beamwidths are about as much too large as the DL6WU calculated values are too low, relative
to modeled data for each Yagi.

How Good or Bad Are the Equations?

There is no single answer to our lead question.  So let's look at two scenarios.

First, if we are doing preliminary planning for a Yagi installation, the boomlength-based gain
equations and the beamwidth equations based on gain provide useful preliminary estimates that
allow for initial decisions.  For example, if a particular communications circuit requires a certain
gain minimum, we can fairly quickly determine a boomlength that will yield that gain.  Since the
boomlength-based equation is conservative, especially for long-boom Yagis, then its value
generally ensures that a well-designed Yagi of the resulting boomlength will achieve the desired
gain.  Using the beamwidth equations gives us a preliminary measure of the precision of aiming
that we shall need to establish and maintain.  However, the variability of designs with respect to
their beamwidth suggests that we should subtract a degree or 2 from both beamwidths in setting
preliminary aiming goals and specifications.



Note that in this exercise, I did not specify any particular design.  The equations provide what
Kraus has properly termed ballpark values and not values that apply to any particular Yagi
design for a given boomlength.

For selecting a design to meet the overall objectives, the equations fail us.  There are
differences in the performance values for Yagis from each of the three sample series at the
desired 14 λ boom selected for review.  What those differences are emerges most ably from
careful modeling (prior to range testing, of course).  Whether the differences are significant
depends upon the total set of specifications going into the design selection.  The specifications
may include such antenna parameters as front-to-back ratio (180° and/or worst-case), front-to-
sidelobe ratio, operating passband, etc.  There may also be a set of physical or mechanical
specifications, and these may either favor or eliminate the higher element density of test-series
Yagi of the desired boomlength and gain.

Used within their ballpark limits, the rules of thumb for calculating Yagi behavior may serve
useful purposes.  However, stretched beyond those limits, they quickly become more
misleading than helpful.  Only a few decades ago, the rule-of-thumb equations were almost all
that amateur radio Yagi designers had to use as calculating tools.  Computer modeling and
optimization has largely replaced the rules of thumb with much more exacting analytical and
design tools.

In general, thumbs are useful, but fingers are much more sensitive.


