/* * Copyright (C) 2020 by Jonathan Naylor G4KLX * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "Config.h" #if defined(MODE_OLED) || defined(I2C_REPEATER) #include "I2CPort.h" #include "Globals.h" //GPIO and I2C Peripheral (I2C3 Configuration) #define RCC_AHB1Periph_GPIO_SCL RCC_AHB1Periph_GPIOA //Bus for GPIO Port of SCL #define RCC_AHB1Periph_GPIO_SDA RCC_AHB1Periph_GPIOC //Bus for GPIO Port of SDA #define GPIO_AF_I2Cx GPIO_AF_I2C3 //Alternate function for GPIO pins #define GPIO_SCL GPIOA #define GPIO_SDA GPIOC #define GPIO_Pin_SCL GPIO_Pin_8 #define GPIO_Pin_SDA GPIO_Pin_9 #define GPIO_PinSource_SCL GPIO_PinSource8 #define GPIO_PinSource_SDA GPIO_PinSource9 CI2CPort::CI2CPort(uint8_t n) : m_port(NULL), m_clock(0x00U), m_ok(true), m_addr(0x00U) { switch (n) { case 1U: m_port = I2C1; m_clock = RCC_APB1Periph_I2C1; m_busSCL = RCC_AHB1Periph_GPIOB; m_busSDA = RCC_AHB1Periph_GPIOB; m_af = GPIO_AF_I2C1; m_gpioSCL = GPIOB; m_gpioSDA = GPIOB; m_pinSCL = GPIO_Pin_8; m_pinSDA = GPIO_Pin_9; m_pinSourceSCL = GPIO_PinSource8; m_pinSourceSDA = GPIO_PinSource9; break; case 3U: m_port = I2C3; m_clock = RCC_APB1Periph_I2C3; m_busSCL = RCC_AHB1Periph_GPIOA; m_busSDA = RCC_AHB1Periph_GPIOC; m_af = GPIO_AF_I2C3; m_gpioSCL = GPIOA; m_gpioSDA = GPIOC; m_pinSCL = GPIO_Pin_8; m_pinSDA = GPIO_Pin_9; m_pinSourceSCL = GPIO_PinSource8; m_pinSourceSDA = GPIO_PinSource9; break; default: m_ok = false; break; } } bool CI2CPort::init() { if (!m_ok) return false; // Enable I2C RCC_APB1PeriphClockCmd(m_clock, ENABLE); // Reset the Peripheral RCC_APB1PeriphResetCmd(m_clock, ENABLE); RCC_APB1PeriphResetCmd(m_clock, DISABLE); // Enable the GPIOs for the SCL/SDA Pins RCC_AHB1PeriphClockCmd(m_busSCL | m_busSDA, ENABLE); // Configure and initialize the GPIOs GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = m_pinSCL; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; GPIO_InitStructure.GPIO_OType = GPIO_OType_OD; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; GPIO_Init(m_gpioSCL, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = m_pinSDA; GPIO_Init(m_gpioSDA, &GPIO_InitStructure); // Connect GPIO pins to peripheral GPIO_PinAFConfig(m_gpioSCL, m_pinSourceSCL, m_af); GPIO_PinAFConfig(m_gpioSDA, m_pinSourceSDA, m_af); // Configure and Initialize the I2C I2C_InitTypeDef I2C_InitStructure; I2C_InitStructure.I2C_Mode = I2C_Mode_I2C; I2C_InitStructure.I2C_DutyCycle = I2C_DutyCycle_2; I2C_InitStructure.I2C_OwnAddress1 = 0x00U; //We are the master. We don't need this I2C_InitStructure.I2C_Ack = I2C_Ack_Enable; I2C_InitStructure.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit; I2C_InitStructure.I2C_ClockSpeed = 50000U; //400kHz (Fast Mode) ( // Initialize the Peripheral I2C_Init(m_port, &I2C_InitStructure); // I2C Peripheral Enable I2C_Cmd(m_port, ENABLE); m_ok = true; return true; } uint8_t CI2CPort::write(uint8_t addr, const uint8_t* data, uint16_t length) { if (!m_ok) return 6U; // Generate a Start condition bool ret = start(); if (!ret) return 7U; // Set I2C device address if needed if (addr != m_addr) { ret = setAddr(addr, I2C_Direction_Transmitter); if (!ret) return 7U; m_addr = addr; } // Unstretch the clock by just reading SR2 (Physically the clock is continued to be strectehed because we have not written anything to the DR yet.) (void) m_port->SR2; // Start Writing Data while (length--) { ret = write(*data++); if (!ret) return 7U; } // Wait for the data on the shift register to be transmitted completely ret = waitSR1FlagsSet(I2C_SR1_BTF); if (!ret) return 7U; // Here TXE=BTF=1. Therefore the clock stretches again. // Order a stop condition at the end of the current tranmission (or if the clock is being streched, generate stop immediatelly) m_port->CR1 |= I2C_CR1_STOP; // Stop condition resets the TXE and BTF automatically. // Wait to be sure that line is iddle ret = waitLineIdle(); if (!ret) return 7U; return 0U; } bool CI2CPort::write(uint8_t c) { // Write the byte to the DR m_port->DR = c; // Wait till the content of DR is transferred to the shift Register. return waitSR1FlagsSet(I2C_SR1_TXE); } bool CI2CPort::setAddr(uint8_t addr, uint8_t dir) { // Write address to the DR (to the bus) m_port->DR = (addr << 1) | dir; // Wait till ADDR is set (ADDR is set when the slave sends ACK to the address). // Clock streches till ADDR is Reset. To reset the hardware i)Read the SR1 ii)Wait till ADDR is Set iii)Read SR2 // Note1:Spec_p602 recommends the waiting operation // Note2:We don't read SR2 here. Therefore the clock is going to be streched even after return from this function return waitSR1FlagsSet(I2C_SR1_ADDR); } bool CI2CPort::start() { // Generate a start condition. (As soon as the line becomes idle, a Start condition will be generated) m_port->CR1 |= I2C_CR1_START; // When start condition is generated SB is set and clock is stretched. // To activate the clock again i)read SR1 ii)write something to DR (e.g. address) return waitSR1FlagsSet(I2C_SR1_SB); //Wait till SB is set } bool CI2CPort::waitSR1FlagsSet(uint32_t flags) { // Wait till the specified SR1 Bits are set // More than 1 Flag can be "or"ed. This routine reads only SR1. uint32_t timeOut = HSI_VALUE; while(((m_port->SR1) & flags) != flags) { if (!(timeOut--)) return false; } return true; } bool CI2CPort::waitLineIdle() { // Wait till the Line becomes idle. uint32_t timeOut = HSI_VALUE; // Check to see if the Line is busy // This bit is set automatically when a start condition is broadcasted on the line (even from another master) // and is reset when stop condition is detected. while((m_port->SR2) & (I2C_SR2_BUSY)) { if (!(timeOut--)) return false; } return true; } #endif