/* * Copyright (C) 2009-2017 by Jonathan Naylor G4KLX * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #define WANT_DEBUG // #define DUMP_SAMPLES #include "Config.h" #include "Globals.h" #include "P25RX.h" #include "Utils.h" const q15_t SCALING_FACTOR = 18750; // Q15(0.55) const uint8_t MAX_SYNC_SYMBOLS_ERRS = 2U; const uint8_t MAX_SYNC_BYTES_ERRS = 3U; const uint8_t BIT_MASK_TABLE[] = {0x80U, 0x40U, 0x20U, 0x10U, 0x08U, 0x04U, 0x02U, 0x01U}; #define WRITE_BIT1(p,i,b) p[(i)>>3] = (b) ? (p[(i)>>3] | BIT_MASK_TABLE[(i)&7]) : (p[(i)>>3] & ~BIT_MASK_TABLE[(i)&7]) const uint16_t NOENDPTR = 9999U; const unsigned int MAX_SYNC_FRAMES = 4U + 1U; CP25RX::CP25RX() : m_state(P25RXS_NONE), m_bitBuffer(), m_buffer(), m_bitPtr(0U), m_dataPtr(0U), m_endPtr(NOENDPTR), m_syncPtr(NOENDPTR), m_minSyncPtr(NOENDPTR), m_maxSyncPtr(NOENDPTR), m_maxCorr(0), m_lostCount(0U), m_countdown(0U), m_centre(), m_centreVal(0), m_centreBest(0), m_threshold(), m_thresholdVal(0), m_thresholdBest(0), m_averagePtr(0u), m_rssiAccum(0U), m_rssiCount(0U) { } void CP25RX::reset() { m_state = P25RXS_NONE; m_dataPtr = 0U; m_bitPtr = 0U; m_maxCorr = 0; m_averagePtr = 0U; m_endPtr = NOENDPTR; m_syncPtr = NOENDPTR; m_minSyncPtr = NOENDPTR; m_maxSyncPtr = NOENDPTR; m_centreVal = 0; m_thresholdVal = 0; m_lostCount = 0U; m_countdown = 0U; m_rssiAccum = 0U; m_rssiCount = 0U; } void CP25RX::samples(const q15_t* samples, uint16_t* rssi, uint8_t length) { for (uint8_t i = 0U; i < length; i++) { q15_t sample = samples[i]; m_rssiAccum += rssi[i]; m_rssiCount++; m_bitBuffer[m_bitPtr] <<= 1; if (sample < 0) m_bitBuffer[m_bitPtr] |= 0x01U; m_buffer[m_dataPtr] = sample; switch (m_state) { case P25RXS_HDR: processHdr(sample); break; case P25RXS_LDU: processLdu(sample); break; default: processNone(sample); break; } m_dataPtr++; if (m_dataPtr >= P25_LDU_FRAME_LENGTH_SAMPLES) m_dataPtr = 0U; m_bitPtr++; if (m_bitPtr >= P25_RADIO_SYMBOL_LENGTH) m_bitPtr = 0U; } } void CP25RX::processNone(q15_t sample) { bool ret = correlateSync(); if (ret) { // On the first sync, start the countdown to the state change if (m_countdown == 0U) { m_rssiAccum = 0U; m_rssiCount = 0U; io.setDecode(true); io.setADCDetection(true); m_countdown = 5U; } } if (m_countdown > 0U) m_countdown--; if (m_countdown == 1U) { for (uint8_t i = 0U; i < 16U; i++) { m_centre[i] = m_centreBest; m_threshold[i] = m_thresholdBest; } m_centreVal = m_centreBest; m_thresholdVal = m_thresholdBest; m_averagePtr = 0U; // These are the sync positions for the following LDU after a HDR m_minSyncPtr = m_syncPtr + P25_HDR_FRAME_LENGTH_SAMPLES - 1U; if (m_minSyncPtr >= P25_LDU_FRAME_LENGTH_SAMPLES) m_minSyncPtr -= P25_LDU_FRAME_LENGTH_SAMPLES; m_maxSyncPtr = m_syncPtr + P25_HDR_FRAME_LENGTH_SAMPLES + 1U; if (m_maxSyncPtr >= P25_LDU_FRAME_LENGTH_SAMPLES) m_maxSyncPtr -= P25_LDU_FRAME_LENGTH_SAMPLES; m_state = P25RXS_HDR; m_countdown = 0U; } } void CP25RX::processHdr(q15_t sample) { if (m_minSyncPtr < m_maxSyncPtr) { if (m_dataPtr >= m_minSyncPtr && m_dataPtr <= m_maxSyncPtr) correlateSync(); } else { if (m_dataPtr >= m_minSyncPtr || m_dataPtr <= m_maxSyncPtr) correlateSync(); } if (m_dataPtr == m_maxSyncPtr) { bool isSync = false; if (m_minSyncPtr < m_maxSyncPtr) { if (m_syncPtr >= m_minSyncPtr && m_syncPtr <= m_maxSyncPtr) isSync = true; } else { if (m_syncPtr >= m_minSyncPtr || m_syncPtr <= m_maxSyncPtr) isSync = true; } DEBUG4("P25RX, sync position in HDR, pos/min/max", m_syncPtr, m_minSyncPtr, m_maxSyncPtr); if (isSync) { // XXX this is possibly wrong uint16_t ptr = m_syncPtr + P25_LDU_FRAME_LENGTH_SAMPLES - P25_HDR_FRAME_LENGTH_SAMPLES - P25_SYNC_LENGTH_SAMPLES + 1U; if (ptr >= P25_LDU_FRAME_LENGTH_SAMPLES) ptr -= P25_LDU_FRAME_LENGTH_SAMPLES; m_threshold[m_averagePtr] = m_thresholdBest; m_centre[m_averagePtr] = m_centreBest; m_averagePtr++; if (m_averagePtr >= 16U) m_averagePtr = 0U; // Find the average centre and threshold values m_centreVal = 0; m_thresholdVal = 0; for (uint8_t i = 0U; i < 16U; i++) { m_centreVal += m_centre[i]; m_thresholdVal += m_threshold[i]; } m_centreVal >>= 4; m_thresholdVal >>= 4; DEBUG4("P25RX: sync found in Hdr (best) pos/centre/threshold", m_syncPtr, m_centreBest, m_thresholdBest); DEBUG4("P25RX: sync found in Hdr pos/centre/threshold", m_syncPtr, m_centreVal, m_thresholdVal); uint8_t frame[P25_HDR_FRAME_LENGTH_BYTES + 1U]; samplesToBits(ptr, P25_HDR_FRAME_LENGTH_SYMBOLS, frame, 8U, m_centreVal, m_thresholdVal); #if defined(DUMP_SAMPLES) writeSync(ptr); #endif frame[0U] = 0x01U; serial.writeP25Hdr(frame, P25_HDR_FRAME_LENGTH_BYTES + 1U); } m_minSyncPtr = m_syncPtr + P25_LDU_FRAME_LENGTH_SAMPLES - 1U; if (m_minSyncPtr >= P25_LDU_FRAME_LENGTH_SAMPLES) m_minSyncPtr -= P25_LDU_FRAME_LENGTH_SAMPLES; m_maxSyncPtr = m_syncPtr + 1U; if (m_maxSyncPtr >= P25_LDU_FRAME_LENGTH_SAMPLES) m_maxSyncPtr -= P25_LDU_FRAME_LENGTH_SAMPLES; m_state = P25RXS_LDU; m_maxCorr = 0; } } void CP25RX::processLdu(q15_t sample) { if (m_minSyncPtr < m_maxSyncPtr) { if (m_dataPtr >= m_minSyncPtr && m_dataPtr <= m_maxSyncPtr) correlateSync(); } else { if (m_dataPtr >= m_minSyncPtr || m_dataPtr <= m_maxSyncPtr) correlateSync(); } if (m_dataPtr == m_endPtr) { uint16_t ptr = m_endPtr + P25_RADIO_SYMBOL_LENGTH + 1U; if (ptr >= P25_LDU_FRAME_LENGTH_SAMPLES) ptr -= P25_LDU_FRAME_LENGTH_SAMPLES; // Only update the centre and threshold if they are from a good sync if (m_lostCount == MAX_SYNC_FRAMES) { m_threshold[m_averagePtr] = m_thresholdBest; m_centre[m_averagePtr] = m_centreBest; m_averagePtr++; if (m_averagePtr >= 16U) m_averagePtr = 0U; // Find the average centre and threshold values m_centreVal = 0; m_thresholdVal = 0; for (uint8_t i = 0U; i < 16U; i++) { m_centreVal += m_centre[i]; m_thresholdVal += m_threshold[i]; } m_centreVal >>= 4; m_thresholdVal >>= 4; DEBUG4("P25RX: sync found in Ldu (best) pos/centre/threshold", m_syncPtr, m_centreBest, m_thresholdBest); DEBUG4("P25RX: sync found in Ldu pos/centre/threshold", m_syncPtr, m_centreVal, m_thresholdVal); m_minSyncPtr = m_syncPtr + P25_LDU_FRAME_LENGTH_SAMPLES - 1U; if (m_minSyncPtr >= P25_LDU_FRAME_LENGTH_SAMPLES) m_minSyncPtr -= P25_LDU_FRAME_LENGTH_SAMPLES; m_maxSyncPtr = m_syncPtr + 1U; if (m_maxSyncPtr >= P25_LDU_FRAME_LENGTH_SAMPLES) m_maxSyncPtr -= P25_LDU_FRAME_LENGTH_SAMPLES; } uint8_t frame[P25_LDU_FRAME_LENGTH_BYTES + 3U]; samplesToBits(ptr, P25_LDU_FRAME_LENGTH_SYMBOLS, frame, 8U, m_centreVal, m_thresholdVal); #if defined(DUMP_SAMPLES) writeSync(ptr); #endif // We've not seen a data sync for too long, signal RXLOST and change to RX_NONE m_lostCount--; if (m_lostCount == 0U) { DEBUG1("P25RX: sync timed out, lost lock"); io.setDecode(false); io.setADCDetection(false); serial.writeP25Lost(); m_state = P25RXS_NONE; m_endPtr = NOENDPTR; m_maxCorr = 0; } else { frame[0U] = m_lostCount == (MAX_SYNC_FRAMES - 1U) ? 0x01U : 0x00U; writeRSSILdu(frame); m_maxCorr = 0; } } } bool CP25RX::correlateSync() { if (countBits32((m_bitBuffer[m_bitPtr] & P25_SYNC_SYMBOLS_MASK) ^ P25_SYNC_SYMBOLS) <= MAX_SYNC_SYMBOLS_ERRS) { uint16_t ptr = m_dataPtr + P25_LDU_FRAME_LENGTH_SAMPLES - P25_SYNC_LENGTH_SAMPLES + P25_RADIO_SYMBOL_LENGTH; if (ptr >= P25_LDU_FRAME_LENGTH_SAMPLES) ptr -= P25_LDU_FRAME_LENGTH_SAMPLES; q31_t corr = 0; q15_t max = -16000; q15_t min = 16000; uint32_t mask = 0x00080000U; for (uint8_t i = 0U; i < P25_SYNC_LENGTH_SYMBOLS; i++, mask >>= 1) { bool b = (P25_SYNC_SYMBOLS & mask) == mask; if (m_buffer[ptr] > max) max = m_buffer[ptr]; if (m_buffer[ptr] < min) min = m_buffer[ptr]; corr += b ? -m_buffer[ptr] : m_buffer[ptr]; ptr += P25_RADIO_SYMBOL_LENGTH; if (ptr >= P25_LDU_FRAME_LENGTH_SAMPLES) ptr -= P25_LDU_FRAME_LENGTH_SAMPLES; } if (corr > m_maxCorr) { q15_t centre = (max + min) >> 1; q31_t v1 = (max - centre) * SCALING_FACTOR; q15_t threshold = q15_t(v1 >> 15); uint8_t sync[P25_SYNC_BYTES_LENGTH]; uint16_t ptr = m_dataPtr + P25_LDU_FRAME_LENGTH_SAMPLES - P25_SYNC_LENGTH_SAMPLES + P25_RADIO_SYMBOL_LENGTH; if (ptr >= P25_LDU_FRAME_LENGTH_SAMPLES) ptr -= P25_LDU_FRAME_LENGTH_SAMPLES; if (m_state == P25RXS_NONE) samplesToBits(ptr, P25_SYNC_LENGTH_SYMBOLS, sync, 0U, centre, threshold); else samplesToBits(ptr, P25_SYNC_LENGTH_SYMBOLS, sync, 0U, m_centreVal, m_thresholdVal); uint8_t errs = 0U; for (uint8_t i = 0U; i < P25_SYNC_BYTES_LENGTH; i++) errs += countBits8(sync[i] ^ P25_SYNC_BYTES[i]); if (errs <= MAX_SYNC_BYTES_ERRS) { m_maxCorr = corr; m_thresholdBest = threshold; m_centreBest = centre; m_lostCount = MAX_SYNC_FRAMES; m_syncPtr = m_dataPtr; // This is the position of the end of a normal LDU m_endPtr = m_dataPtr + P25_LDU_FRAME_LENGTH_SAMPLES - P25_SYNC_LENGTH_SAMPLES - 1U; if (m_endPtr >= P25_LDU_FRAME_LENGTH_SAMPLES) m_endPtr -= P25_LDU_FRAME_LENGTH_SAMPLES; // These are the positions of the sync in the following LDU if the HDR is present if (m_state == P25RXS_NONE) { m_minSyncPtr = m_dataPtr + P25_HDR_FRAME_LENGTH_SAMPLES - 1U; if (m_minSyncPtr >= P25_LDU_FRAME_LENGTH_SAMPLES) m_minSyncPtr -= P25_LDU_FRAME_LENGTH_SAMPLES; m_maxSyncPtr = m_dataPtr + P25_HDR_FRAME_LENGTH_SAMPLES + 1U; if (m_maxSyncPtr >= P25_LDU_FRAME_LENGTH_SAMPLES) m_maxSyncPtr -= P25_LDU_FRAME_LENGTH_SAMPLES; } return true; } } } return false; } void CP25RX::samplesToBits(uint16_t start, uint16_t count, uint8_t* buffer, uint16_t offset, q15_t centre, q15_t threshold) { for (uint16_t i = 0U; i < count; i++) { q15_t sample = m_buffer[start] - centre; if (sample < -threshold) { WRITE_BIT1(buffer, offset, false); offset++; WRITE_BIT1(buffer, offset, true); offset++; } else if (sample < 0) { WRITE_BIT1(buffer, offset, false); offset++; WRITE_BIT1(buffer, offset, false); offset++; } else if (sample < threshold) { WRITE_BIT1(buffer, offset, true); offset++; WRITE_BIT1(buffer, offset, false); offset++; } else { WRITE_BIT1(buffer, offset, true); offset++; WRITE_BIT1(buffer, offset, true); offset++; } start += P25_RADIO_SYMBOL_LENGTH; if (start >= P25_LDU_FRAME_LENGTH_SAMPLES) start -= P25_LDU_FRAME_LENGTH_SAMPLES; } } void CP25RX::writeRSSILdu(uint8_t* ldu) { #if defined(SEND_RSSI_DATA) if (m_rssiCount > 0U) { uint16_t rssi = m_rssiAccum / m_rssiCount; ldu[216U] = (rssi >> 8) & 0xFFU; ldu[217U] = (rssi >> 0) & 0xFFU; serial.writeP25Ldu(ldu, P25_LDU_FRAME_LENGTH_BYTES + 3U); } else { serial.writeP25Ldu(ldu, P25_LDU_FRAME_LENGTH_BYTES + 1U); } #else serial.writeP25Ldu(ldu, P25_LDU_FRAME_LENGTH_BYTES + 1U); #endif m_rssiAccum = 0U; m_rssiCount = 0U; } #if defined(DUMP_SAMPLES) void CP25RX::writeSync(uint16_t start) { q15_t sync[P25_SYNC_LENGTH_SYMBOLS]; for (uint16_t i = 0U; i < P25_SYNC_LENGTH_SYMBOLS; i++) { sync[i] = m_buffer[start]; start += P25_RADIO_SYMBOL_LENGTH; if (start >= P25_LDU_FRAME_LENGTH_SAMPLES) start -= P25_LDU_FRAME_LENGTH_SAMPLES; } serial.writeSamples(STATE_P25, sync, P25_SYNC_LENGTH_SYMBOLS); } #endif