/* * Copyright (C) 2015,2016,2017,2018 by Jonathan Naylor G4KLX * Copyright (C) 2015 by Jim Mclaughlin KI6ZUM * Copyright (C) 2016 by Colin Durbridge G4EML * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "Config.h" #include "Globals.h" #include "IO.h" // Generated using [b, a] = butter(1, 0.0005) in MATLAB static q31_t DC_FILTER[] = {1685306, 0, 1685306, 0, 2144113034, 0}; // {b0, 0, b1, b2, -a1, -a2} const uint32_t DC_FILTER_STAGES = 1U; // One Biquad stage // Generated using rcosdesign(0.2, 8, 10, 'sqrt') in MATLAB static q15_t RRC_0_2_FILTER[] = {284, 198, 73, -78, -240, -393, -517, -590, -599, -533, -391, -181, 79, 364, 643, 880, 1041, 1097, 1026, 819, 483, 39, -477, -1016, -1516, -1915, -2150, -2164, -1914, -1375, -545, 557, 1886, 3376, 4946, 6502, 7946, 9184, 10134, 10731, 10935, 10731, 10134, 9184, 7946, 6502, 4946, 3376, 1886, 557, -545, -1375, -1914, -2164, -2150, -1915, -1516, -1016, -477, 39, 483, 819, 1026, 1097, 1041, 880, 643, 364, 79, -181, -391, -533, -599, -590, -517, -393, -240, -78, 73, 198, 284, 0}; const uint16_t RRC_0_2_FILTER_LEN = 82U; // Generated using rcosdesign(0.2, 8, 20, 'sqrt') in MATLAB static q15_t NXDN_0_2_FILTER[] = {201, 174, 140, 99, 52, 0, -55, -112, -170, -226, -278, -325, -365, -397, -417, -427, -424, -407, -377, -333, -277, -208, -128, -40, 56, 156, 258, 358, 455, 544, 622, 687, 736, 766, 775, 762, 725, 664, 579, 471, 342, 193, 27, -151, -338, -528, -718, -901, -1072, -1225, -1354, -1454, -1520, -1547, -1530, -1466, -1353, -1189, -972, -704, -385, -18, 394, 846, 1333, 1850, 2388, 2940, 3498, 4053, 4598, 5122, 5619, 6079, 6494, 6859, 7166, 7410, 7588, 7696, 7732, 7696, 7588, 7410, 7166, 6859, 6494, 6079, 5619, 5122, 4598, 4053, 3498, 2940, 2388, 1850, 1333, 846, 394, -18, -385, -704, -972, -1189, -1353, -1466, -1530, -1547, -1520, -1454, -1354, -1225, -1072, -901, -718, -528, -338, -151, 27, 193, 342, 471, 579, 664, 725, 762, 775, 766, 736, 687, 622, 544, 455, 358, 258, 156, 56, -40, -128, -208, -277, -333, -377, -407, -424, -427, -417, -397, -365, -325, -278, -226, -170, -112, -55, 0, 52, 99, 140, 174, 201, 0}; const uint16_t NXDN_0_2_FILTER_LEN = 162U; static q15_t NXDN_ISINC_FILTER[] = {7616, -1333, -1856, -2611, -3399, -4006, -4230, -3918, -2988, -1458, 561, 2867, 5200, 7276, 8832, 9665, 9665, 8832, 7276, 5200, 2867, 561, -1458, -2988, -3918, -4230, -4006, -3399, -2611, -1856, -1333, 7616}; const uint16_t NXDN_ISINC_FILTER_LEN = 32U; // Generated using gaussfir(0.5, 4, 10) in MATLAB //static q15_t GAUSSIAN_0_5_FILTER[] = {1, 4, 15, 52, 151, 380, 832, 1579, 2599, 3710, 4594, 4933, 4594, 3710, 2599, 1579, 832, 380, 151, 52, 15, 4, 1, 0}; //const uint16_t GAUSSIAN_0_5_FILTER_LEN = 24U; // One symbol boxcar filter static q15_t BOXCAR_FILTER[] = {6000, 6000, 6000, 6000, 6000, 6000, 6000, 6000, 6000, 6000, 0, 0}; const uint16_t BOXCAR_FILTER_LEN = 12U; const uint16_t DC_OFFSET = 2048U; CIO::CIO() : m_started(false), m_rxBuffer(RX_RINGBUFFER_SIZE), m_txBuffer(TX_RINGBUFFER_SIZE), m_rssiBuffer(RX_RINGBUFFER_SIZE), m_dcFilter(), m_dcState(), m_rrcFilter(), //m_gaussianFilter(), m_boxcarFilter(), m_nxdnFilter(), m_nxdnISincFilter(), m_rrcState(), //m_gaussianState(), m_boxcarState(), m_nxdnState(), m_nxdnISincState(), m_pttInvert(false), m_rxLevel(128 * 128), m_cwIdTXLevel(128 * 128), m_dstarTXLevel(128 * 128), m_dmrTXLevel(128 * 128), m_ysfTXLevel(128 * 128), m_p25TXLevel(128 * 128), m_nxdnTXLevel(128 * 128), m_rxDCOffset(DC_OFFSET), m_txDCOffset(DC_OFFSET), m_ledCount(0U), m_ledValue(true), m_detect(false), m_adcOverflow(0U), m_dacOverflow(0U), m_watchdog(0U), m_lockout(false) { ::memset(m_rrcState, 0x00U, 140U * sizeof(q15_t)); // ::memset(m_gaussianState, 0x00U, 80U * sizeof(q15_t)); ::memset(m_boxcarState, 0x00U, 60U * sizeof(q15_t)); ::memset(m_nxdnState, 0x00U, 220U * sizeof(q15_t)); ::memset(m_nxdnISincState, 0x00U, 60U * sizeof(q15_t)); ::memset(m_dcState, 0x00U, 4U * sizeof(q31_t)); m_dcFilter.numStages = DC_FILTER_STAGES; m_dcFilter.pState = m_dcState; m_dcFilter.pCoeffs = DC_FILTER; m_dcFilter.postShift = 0; m_rrcFilter.numTaps = RRC_0_2_FILTER_LEN; m_rrcFilter.pState = m_rrcState; m_rrcFilter.pCoeffs = RRC_0_2_FILTER; // m_gaussianFilter.numTaps = GAUSSIAN_0_5_FILTER_LEN; // m_gaussianFilter.pState = m_gaussianState; // m_gaussianFilter.pCoeffs = GAUSSIAN_0_5_FILTER; m_boxcarFilter.numTaps = BOXCAR_FILTER_LEN; m_boxcarFilter.pState = m_boxcarState; m_boxcarFilter.pCoeffs = BOXCAR_FILTER; m_nxdnFilter.numTaps = NXDN_0_2_FILTER_LEN; m_nxdnFilter.pState = m_nxdnState; m_nxdnFilter.pCoeffs = NXDN_0_2_FILTER; m_nxdnISincFilter.numTaps = NXDN_ISINC_FILTER_LEN; m_nxdnISincFilter.pState = m_nxdnISincState; m_nxdnISincFilter.pCoeffs = NXDN_ISINC_FILTER; initInt(); selfTest(); } void CIO::selfTest() { bool ledValue = false; for (uint8_t i = 0; i < 6; i++) { ledValue = !ledValue; // We exclude PTT to avoid trigger the transmitter setLEDInt(ledValue); setCOSInt(ledValue); #if defined(ARDUINO_MODE_PINS) setDStarInt(ledValue); setDMRInt(ledValue); setYSFInt(ledValue); setP25Int(ledValue); setNXDNInt(ledValue); #endif delayInt(250); } #if defined(ARDUINO_MODE_PINS) setDStarInt(true); setDMRInt(false); setYSFInt(false); setP25Int(false); setNXDNInt(false); delayInt(250); setDStarInt(true); setDMRInt(true); setYSFInt(false); setP25Int(false); setNXDNInt(false); delayInt(250); setDStarInt(true); setDMRInt(true); setYSFInt(true); setP25Int(false); setNXDNInt(false); delayInt(250); setDStarInt(true); setDMRInt(true); setYSFInt(true); setP25Int(true); setNXDNInt(false); delayInt(250); setDStarInt(true); setDMRInt(true); setYSFInt(true); setP25Int(true); setNXDNInt(true); delayInt(250); setDStarInt(true); setDMRInt(true); setYSFInt(true); setP25Int(true); setNXDNInt(false); delayInt(250); setDStarInt(true); setDMRInt(true); setYSFInt(true); setP25Int(false); setNXDNInt(false); delayInt(250); setDStarInt(true); setDMRInt(true); setYSFInt(false); setP25Int(false); setNXDNInt(false); delayInt(250); setDStarInt(true); setDMRInt(false); setYSFInt(false); setP25Int(false); setNXDNInt(false); delayInt(250); setDStarInt(false); setDMRInt(false); setYSFInt(false); setP25Int(false); setNXDNInt(false); #endif } void CIO::start() { if (m_started) return; startInt(); m_started = true; setMode(); } void CIO::process() { m_ledCount++; if (m_started) { // Two seconds timeout if (m_watchdog >= 96000U) { if (m_modemState == STATE_DSTAR || m_modemState == STATE_DMR || m_modemState == STATE_YSF || m_modemState == STATE_P25 || m_modemState == STATE_NXDN) { if (m_modemState == STATE_DMR && m_tx) dmrTX.setStart(false); m_modemState = STATE_IDLE; setMode(); } m_watchdog = 0U; } if (m_ledCount >= 48000U) { m_ledCount = 0U; m_ledValue = !m_ledValue; setLEDInt(m_ledValue); } } else { if (m_ledCount >= 480000U) { m_ledCount = 0U; m_ledValue = !m_ledValue; setLEDInt(m_ledValue); } return; } #if defined(USE_COS_AS_LOCKOUT) m_lockout = getCOSInt(); #endif // Switch off the transmitter if needed if (m_txBuffer.getData() == 0U && m_tx) { m_tx = false; setPTTInt(m_pttInvert ? true : false); } if (m_rxBuffer.getData() >= RX_BLOCK_SIZE) { q15_t samples[RX_BLOCK_SIZE]; uint8_t control[RX_BLOCK_SIZE]; uint16_t rssi[RX_BLOCK_SIZE]; for (uint16_t i = 0U; i < RX_BLOCK_SIZE; i++) { uint16_t sample; m_rxBuffer.get(sample, control[i]); m_rssiBuffer.get(rssi[i]); // Detect ADC overflow if (m_detect && (sample == 0U || sample == 4095U)) m_adcOverflow++; q15_t res1 = q15_t(sample) - m_rxDCOffset; q31_t res2 = res1 * m_rxLevel; samples[i] = q15_t(__SSAT((res2 >> 15), 16)); } if (m_lockout) return; #if defined(USE_DCBLOCKER) q31_t q31Samples[RX_BLOCK_SIZE]; ::arm_q15_to_q31(samples, q31Samples, RX_BLOCK_SIZE); q31_t dcValues[RX_BLOCK_SIZE]; ::arm_biquad_cascade_df1_q31(&m_dcFilter, q31Samples, dcValues, RX_BLOCK_SIZE); q31_t dcLevel = 0; for (uint8_t i = 0U; i < RX_BLOCK_SIZE; i++) dcLevel += dcValues[i]; dcLevel /= RX_BLOCK_SIZE; q15_t offset = q15_t(__SSAT((dcLevel >> 16), 16));; q15_t dcSamples[RX_BLOCK_SIZE]; for (uint8_t i = 0U; i < RX_BLOCK_SIZE; i++) dcSamples[i] = samples[i] - offset; #endif if (m_modemState == STATE_IDLE) { if (m_dstarEnable) { q15_t GMSKVals[RX_BLOCK_SIZE]; #if defined(USE_DCBLOCKER) ::arm_fir_fast_q15(&m_boxcarFilter, dcSamples, GMSKVals, RX_BLOCK_SIZE); #else ::arm_fir_fast_q15(&m_boxcarFilter, samples, GMSKVals, RX_BLOCK_SIZE); #endif dstarRX.samples(GMSKVals, rssi, RX_BLOCK_SIZE); } if (m_p25Enable) { q15_t P25Vals[RX_BLOCK_SIZE]; #if defined(USE_DCBLOCKER) ::arm_fir_fast_q15(&m_boxcarFilter, dcSamples, P25Vals, RX_BLOCK_SIZE); #else ::arm_fir_fast_q15(&m_boxcarFilter, samples, P25Vals, RX_BLOCK_SIZE); #endif p25RX.samples(P25Vals, rssi, RX_BLOCK_SIZE); } if (m_nxdnEnable) { q15_t NXDNValsTmp[RX_BLOCK_SIZE]; #if defined(USE_DCBLOCKER) ::arm_fir_fast_q15(&m_nxdnFilter, dcSamples, NXDNValsTmp, RX_BLOCK_SIZE); #else ::arm_fir_fast_q15(&m_nxdnFilter, samples, NXDNValsTmp, RX_BLOCK_SIZE); #endif q15_t NXDNVals[RX_BLOCK_SIZE]; ::arm_fir_fast_q15(&m_nxdnISincFilter, NXDNValsTmp, NXDNVals, RX_BLOCK_SIZE); nxdnRX.samples(NXDNVals, rssi, RX_BLOCK_SIZE); } if (m_dmrEnable || m_ysfEnable) { q15_t RRCVals[RX_BLOCK_SIZE]; ::arm_fir_fast_q15(&m_rrcFilter, samples, RRCVals, RX_BLOCK_SIZE); if (m_ysfEnable) ysfRX.samples(RRCVals, rssi, RX_BLOCK_SIZE); if (m_dmrEnable) { if (m_duplex) dmrIdleRX.samples(RRCVals, RX_BLOCK_SIZE); else dmrDMORX.samples(RRCVals, rssi, RX_BLOCK_SIZE); } } } else if (m_modemState == STATE_DSTAR) { if (m_dstarEnable) { q15_t GMSKVals[RX_BLOCK_SIZE]; #if defined(USE_DCBLOCKER) ::arm_fir_fast_q15(&m_boxcarFilter, dcSamples, GMSKVals, RX_BLOCK_SIZE); #else ::arm_fir_fast_q15(&m_boxcarFilter, samples, GMSKVals, RX_BLOCK_SIZE); #endif dstarRX.samples(GMSKVals, rssi, RX_BLOCK_SIZE); } } else if (m_modemState == STATE_DMR) { if (m_dmrEnable) { q15_t DMRVals[RX_BLOCK_SIZE]; ::arm_fir_fast_q15(&m_rrcFilter, samples, DMRVals, RX_BLOCK_SIZE); if (m_duplex) { // If the transmitter isn't on, use the DMR idle RX to detect the wakeup CSBKs if (m_tx) dmrRX.samples(DMRVals, rssi, control, RX_BLOCK_SIZE); else dmrIdleRX.samples(DMRVals, RX_BLOCK_SIZE); } else { dmrDMORX.samples(DMRVals, rssi, RX_BLOCK_SIZE); } } } else if (m_modemState == STATE_YSF) { if (m_ysfEnable) { q15_t YSFVals[RX_BLOCK_SIZE]; #if defined(USE_DCBLOCKER) ::arm_fir_fast_q15(&m_rrcFilter, dcSamples, YSFVals, RX_BLOCK_SIZE); #else ::arm_fir_fast_q15(&m_rrcFilter, samples, YSFVals, RX_BLOCK_SIZE); #endif ysfRX.samples(YSFVals, rssi, RX_BLOCK_SIZE); } } else if (m_modemState == STATE_P25) { if (m_p25Enable) { q15_t P25Vals[RX_BLOCK_SIZE]; #if defined(USE_DCBLOCKER) ::arm_fir_fast_q15(&m_boxcarFilter, dcSamples, P25Vals, RX_BLOCK_SIZE); #else ::arm_fir_fast_q15(&m_boxcarFilter, samples, P25Vals, RX_BLOCK_SIZE); #endif p25RX.samples(P25Vals, rssi, RX_BLOCK_SIZE); } } else if (m_modemState == STATE_NXDN) { if (m_nxdnEnable) { q15_t NXDNValsTmp[RX_BLOCK_SIZE]; #if defined(USE_DCBLOCKER) ::arm_fir_fast_q15(&m_nxdnFilter, dcSamples, NXDNValsTmp, RX_BLOCK_SIZE); #else ::arm_fir_fast_q15(&m_nxdnFilter, samples, NXDNValsTmp, RX_BLOCK_SIZE); #endif q15_t NXDNVals[RX_BLOCK_SIZE]; ::arm_fir_fast_q15(&m_nxdnISincFilter, NXDNValsTmp, NXDNVals, RX_BLOCK_SIZE); nxdnRX.samples(NXDNVals, rssi, RX_BLOCK_SIZE); } } else if (m_modemState == STATE_DSTARCAL) { q15_t GMSKVals[RX_BLOCK_SIZE]; ::arm_fir_fast_q15(&m_boxcarFilter, samples, GMSKVals, RX_BLOCK_SIZE); calDStarRX.samples(GMSKVals, RX_BLOCK_SIZE); } else if (m_modemState == STATE_RSSICAL) { calRSSI.samples(rssi, RX_BLOCK_SIZE); } } } void CIO::write(MMDVM_STATE mode, q15_t* samples, uint16_t length, const uint8_t* control) { if (!m_started) return; if (m_lockout) return; // Switch the transmitter on if needed if (!m_tx) { m_tx = true; setPTTInt(m_pttInvert ? false : true); } q15_t txLevel = 0; switch (mode) { case STATE_DSTAR: txLevel = m_dstarTXLevel; break; case STATE_DMR: txLevel = m_dmrTXLevel; break; case STATE_YSF: txLevel = m_ysfTXLevel; break; case STATE_P25: txLevel = m_p25TXLevel; break; case STATE_NXDN: txLevel = m_nxdnTXLevel; break; default: txLevel = m_cwIdTXLevel; break; } for (uint16_t i = 0U; i < length; i++) { q31_t res1 = samples[i] * txLevel; q15_t res2 = q15_t(__SSAT((res1 >> 15), 16)); uint16_t res3 = uint16_t(res2 + m_txDCOffset); // Detect DAC overflow if (res3 > 4095U) m_dacOverflow++; if (control == NULL) m_txBuffer.put(res3, MARK_NONE); else m_txBuffer.put(res3, control[i]); } } uint16_t CIO::getSpace() const { return m_txBuffer.getSpace(); } void CIO::setDecode(bool dcd) { if (dcd != m_dcd) setCOSInt(dcd ? true : false); m_dcd = dcd; } void CIO::setADCDetection(bool detect) { m_detect = detect; } void CIO::setMode() { #if defined(ARDUINO_MODE_PINS) setDStarInt(m_modemState == STATE_DSTAR); setDMRInt(m_modemState == STATE_DMR); setYSFInt(m_modemState == STATE_YSF); setP25Int(m_modemState == STATE_P25); setNXDNInt(m_modemState == STATE_NXDN); #endif } void CIO::setParameters(bool rxInvert, bool txInvert, bool pttInvert, uint8_t rxLevel, uint8_t cwIdTXLevel, uint8_t dstarTXLevel, uint8_t dmrTXLevel, uint8_t ysfTXLevel, uint8_t p25TXLevel, uint8_t nxdnTXLevel, int16_t txDCOffset, int16_t rxDCOffset) { m_pttInvert = pttInvert; m_rxLevel = q15_t(rxLevel * 128); m_cwIdTXLevel = q15_t(cwIdTXLevel * 128); m_dstarTXLevel = q15_t(dstarTXLevel * 128); m_dmrTXLevel = q15_t(dmrTXLevel * 128); m_ysfTXLevel = q15_t(ysfTXLevel * 128); m_p25TXLevel = q15_t(p25TXLevel * 128); m_nxdnTXLevel = q15_t(nxdnTXLevel * 128); m_rxDCOffset = DC_OFFSET + rxDCOffset; m_txDCOffset = DC_OFFSET + txDCOffset; if (rxInvert) m_rxLevel = -m_rxLevel; if (txInvert) { m_dstarTXLevel = -m_dstarTXLevel; m_dmrTXLevel = -m_dmrTXLevel; m_ysfTXLevel = -m_ysfTXLevel; m_p25TXLevel = -m_p25TXLevel; m_nxdnTXLevel = -m_nxdnTXLevel; } } void CIO::getOverflow(bool& adcOverflow, bool& dacOverflow) { adcOverflow = m_adcOverflow > 0U; dacOverflow = m_dacOverflow > 0U; m_adcOverflow = 0U; m_dacOverflow = 0U; } bool CIO::hasTXOverflow() { return m_txBuffer.hasOverflowed(); } bool CIO::hasRXOverflow() { return m_rxBuffer.hasOverflowed(); } void CIO::resetWatchdog() { m_watchdog = 0U; } uint32_t CIO::getWatchdog() { return m_watchdog; } bool CIO::hasLockout() const { return m_lockout; }