/* * Copyright (C) 2020 by Jonathan Naylor G4KLX / Geoffrey Merck F4FXL - KC3FRA * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "Goertzel.h" CGoertzel::CGoertzel(const TGoertzelParameters& f1, const TGoertzelParameters& f2, const TGoertzelParameters& f3, const int* window, int windowCorr, uint16_t n) : m_min(0), m_max(0), m_processedSamplesCount(0), m_n(n), m_window(window),//Window should not be deleted by someone else m_windowCorr(windowCorr) { m_freqs[0] = f1; m_freqs[1] = f2; m_freqs[2] = f3; reset(); } void CGoertzel::reset() { ::memset(m_q1s, 0, sizeof(m_q1s)); ::memset(m_q2s, 0, sizeof(m_q2s)); m_processedSamplesCount = 0U; m_max = 0U; m_min = 0U; } GOERTZEL_RESULT CGoertzel::samples(const q15_t *samples, uint8_t length, unsigned int * f1MagSquared, unsigned int * f2MagSquared, unsigned int* f3MagSquared) { int scalingFactor = (length / 2) * m_windowCorr; unsigned int * magnitudes[3] = {f1MagSquared, f2MagSquared, f3MagSquared}; GOERTZEL_RESULT magnitudesComputed = GR_NOT_READY; for(uint8_t sampleIdx = 0; sampleIdx < length; sampleIdx++) { if(samples[sampleIdx] < m_min) m_min = samples[sampleIdx]; if(samples[sampleIdx] > m_max) m_max = samples[sampleIdx]; for(uint8_t i = 0; i < 3; i++) { int q0 = m_freqs[i].coeff * m_q1s[i] - m_q2s[i] + (samples[sampleIdx] * m_window[m_processedSamplesCount]); m_q2s[i] = m_q1s[i]; m_q1s[i] = q0; } m_processedSamplesCount++; //we have collected enough samples, evaluate now, if(m_processedSamplesCount == m_n) { if(magnitudesComputed == GR_NOT_READY) { //however if we already had collected enough samples only keep the magnitudes we computed the first time int span = m_max - m_min; for(uint8_t i = 0; i < 3; i++) { int real = ((m_q1s[i] * m_freqs[i].cos - m_q2s[i]) / scalingFactor)/span;//we divide by max-min so that we are normalized in the range [0, 1], this way we are input signal levels agnostic int imag = ((m_q1s[i] * m_freqs[i].sin) / scalingFactor)/span; *(magnitudes[i]) = real * real + imag * imag; } magnitudesComputed = GR_READY; } reset(); } } return magnitudesComputed; }