/* * Copyright (C) 2020 by Jonathan Naylor G4KLX * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "Config.h" #include "Globals.h" #include "FM.h" CFM::CFM() : m_callsign(), m_rfAck(), m_ctcssRX(), m_ctcssTX(), m_timeoutTone(), m_state(FS_LISTENING), m_callsignAtStart(false), m_callsignAtEnd(false), m_callsignTimer(), m_timeoutTimer(), m_holdoffTimer(), m_kerchunkTimer(), m_ackMinTimer(), m_ackDelayTimer(), m_hangTimer(), m_filterStage1( 724, 1448, 724, 32768, -37895, 21352),//3rd order Cheby Filter 300 to 2700Hz, 0.2dB passband ripple, sampling rate 24kHz m_filterStage2(32768, 0,-32768, 32768, -50339, 19052), m_filterStage3(32768, -65536, 32768, 32768, -64075, 31460), m_preemphasis(32768, 13967, 0, 32768, -18801, 0),//75µS 24kHz sampling rate m_deemphasis (32768, -18801, 0, 32768, 13967, 0),//75µS 24kHz sampling rate m_blanking(), m_useCOS(true), m_rfAudioBoost(1U), m_downsampler(1024)//Size might need adjustement { } void CFM::samples(bool cos, q15_t* samples, uint8_t length) { if (!m_useCOS) cos = true; clock(length); uint8_t i = 0U; for (; i < length; i++) { q15_t currentSample = samples[i];//save to a local variable to avoid indirection on every access uint8_t ctcssState = m_ctcssRX.process(currentSample); if (CTCSS_NOT_READY(ctcssState) && m_modemState != STATE_FM) { //Not enough samples to determine if you have CTCSS, just carry on continue; } else if (CTCSS_READY(ctcssState) && m_modemState != STATE_FM) { //we had enough samples for CTCSS and we are in some other mode than FM bool validCTCSS = CTCSS_VALID(ctcssState); stateMachine(validCTCSS && cos); if (m_modemState != STATE_FM) continue; } else if (CTCSS_READY(ctcssState) && m_modemState == STATE_FM) { //We had enough samples for CTCSS and we are in FM mode, trigger the state machine bool validCTCSS = CTCSS_VALID(ctcssState); stateMachine(validCTCSS && cos); if (m_modemState != STATE_FM) break; } else if (CTCSS_NOT_READY(ctcssState) && m_modemState == STATE_FM && i == length - 1) { //Not enough samples for CTCSS but we already are in FM, trigger the state machine //but do not trigger the state machine on every single sample, save CPU! bool validCTCSS = CTCSS_VALID(ctcssState); stateMachine(validCTCSS && cos); } // Only let audio through when relaying audio if (m_state == FS_RELAYING || m_state == FS_KERCHUNK) { // currentSample = m_deemphasis.filter(currentSample); // m_downsampler.addSample(currentSample); currentSample = m_blanking.process(currentSample); currentSample *= m_rfAudioBoost; } else { currentSample = 0; } if (!m_callsign.isRunning()) currentSample += m_rfAck.getHighAudio(); if (!m_rfAck.isRunning()) { if (m_state == FS_LISTENING) currentSample += m_callsign.getHighAudio(); else currentSample += m_callsign.getLowAudio(); } if (!m_callsign.isRunning() && !m_rfAck.isRunning()) currentSample += m_timeoutTone.getAudio(); currentSample = m_filterStage3.filter(m_filterStage2.filter(m_filterStage1.filter(currentSample))); // currentSample = m_preemphasis.filter(currentSample); currentSample += m_ctcssTX.getAudio(); samples[i] = currentSample; } if (m_modemState == STATE_FM) io.write(STATE_FM, samples, i);//only write the actual number of processed samples to IO } void CFM::process() { } void CFM::reset() { m_state = FS_LISTENING; m_callsignTimer.stop(); m_timeoutTimer.stop(); m_kerchunkTimer.stop(); m_ackMinTimer.stop(); m_ackDelayTimer.stop(); m_hangTimer.stop(); m_ctcssRX.reset(); m_rfAck.stop(); m_callsign.stop(); m_timeoutTone.stop(); } uint8_t CFM::setCallsign(const char* callsign, uint8_t speed, uint16_t frequency, uint8_t time, uint8_t holdoff, uint8_t highLevel, uint8_t lowLevel, bool callsignAtStart, bool callsignAtEnd) { m_callsignAtStart = callsignAtStart; m_callsignAtEnd = callsignAtEnd; uint16_t holdoffTime = holdoff * 60U; uint16_t callsignTime = time * 60U; m_holdoffTimer.setTimeout(holdoffTime, 0U); m_callsignTimer.setTimeout(callsignTime, 0U); if (holdoffTime > 0U) m_holdoffTimer.start(); return m_callsign.setParams(callsign, speed, frequency, highLevel, lowLevel); } uint8_t CFM::setAck(const char* rfAck, uint8_t speed, uint16_t frequency, uint8_t minTime, uint16_t delay, uint8_t level) { m_ackDelayTimer.setTimeout(0U, delay); m_ackMinTimer.setTimeout(minTime, 0U); return m_rfAck.setParams(rfAck, speed, frequency, level, level); } uint8_t CFM::setMisc(uint16_t timeout, uint8_t timeoutLevel, uint8_t ctcssFrequency, uint8_t ctcssThreshold, uint8_t ctcssLevel, uint8_t kerchunkTime, uint8_t hangTime, bool useCOS, uint8_t rfAudioBoost, uint8_t maxDev, uint8_t rxLevel) { m_useCOS = useCOS; m_rfAudioBoost = q15_t(rfAudioBoost); m_timeoutTimer.setTimeout(timeout, 0U); m_kerchunkTimer.setTimeout(kerchunkTime, 0U); m_hangTimer.setTimeout(hangTime, 0U); m_timeoutTone.setParams(timeoutLevel); m_blanking.setParams(maxDev, timeoutLevel); uint8_t ret = m_ctcssRX.setParams(ctcssFrequency, ctcssThreshold, rxLevel); if (ret != 0U) return ret; return m_ctcssTX.setParams(ctcssFrequency, ctcssLevel); } void CFM::stateMachine(bool validSignal) { switch (m_state) { case FS_LISTENING: listeningState(validSignal); break; case FS_KERCHUNK: kerchunkState(validSignal); break; case FS_RELAYING: relayingState(validSignal); break; case FS_RELAYING_WAIT: relayingWaitState(validSignal); break; case FS_TIMEOUT: timeoutState(validSignal); break; case FS_TIMEOUT_WAIT: timeoutWaitState(validSignal); break; case FS_HANG: hangState(validSignal); break; default: break; } if (m_state == FS_LISTENING && m_modemState == STATE_FM) { if (!m_callsign.isRunning() && !m_rfAck.isRunning()) { DEBUG1("Change to STATE_IDLE"); m_modemState = STATE_IDLE; m_callsignTimer.stop(); m_timeoutTimer.stop(); m_kerchunkTimer.stop(); m_ackMinTimer.stop(); m_ackDelayTimer.stop(); m_hangTimer.stop(); } } } void CFM::clock(uint8_t length) { m_callsignTimer.clock(length); m_timeoutTimer.clock(length); m_holdoffTimer.clock(length); m_kerchunkTimer.clock(length); m_ackMinTimer.clock(length); m_ackDelayTimer.clock(length); m_hangTimer.clock(length); } void CFM::listeningState(bool validSignal) { if (validSignal) { if (m_kerchunkTimer.getTimeout() > 0U) { DEBUG1("State to KERCHUNK"); m_state = FS_KERCHUNK; m_kerchunkTimer.start(); } else { DEBUG1("State to RELAYING"); m_state = FS_RELAYING; if (m_callsignAtStart) sendCallsign(); } beginRelaying(); m_callsignTimer.start(); DEBUG1("Change to STATE_FM"); m_modemState = STATE_FM; } } void CFM::kerchunkState(bool validSignal) { if (validSignal) { if (m_kerchunkTimer.hasExpired()) { DEBUG1("State to RELAYING"); m_state = FS_RELAYING; m_kerchunkTimer.stop(); } } else { DEBUG1("State to LISTENING"); m_state = FS_LISTENING; m_kerchunkTimer.stop(); m_timeoutTimer.stop(); m_ackMinTimer.stop(); m_callsignTimer.stop(); } } void CFM::relayingState(bool validSignal) { if (validSignal) { if (m_timeoutTimer.isRunning() && m_timeoutTimer.hasExpired()) { DEBUG1("State to TIMEOUT"); m_state = FS_TIMEOUT; m_ackMinTimer.stop(); m_timeoutTimer.stop(); m_timeoutTone.start(); } } else { DEBUG1("State to RELAYING_WAIT"); m_state = FS_RELAYING_WAIT; m_ackDelayTimer.start(); } if (m_callsignTimer.isRunning() && m_callsignTimer.hasExpired()) { sendCallsign(); m_callsignTimer.start(); } } void CFM::relayingWaitState(bool validSignal) { if (validSignal) { DEBUG1("State to RELAYING"); m_state = FS_RELAYING; m_ackDelayTimer.stop(); } else { if (m_ackDelayTimer.isRunning() && m_ackDelayTimer.hasExpired()) { DEBUG1("State to HANG"); m_state = FS_HANG; if (m_ackMinTimer.isRunning()) { if (m_ackMinTimer.hasExpired()) { DEBUG1("Send ack"); m_rfAck.start(); m_ackMinTimer.stop(); } } else { DEBUG1("Send ack"); m_rfAck.start(); m_ackMinTimer.stop(); } m_ackDelayTimer.stop(); m_timeoutTimer.stop(); m_hangTimer.start(); } } if (m_callsignTimer.isRunning() && m_callsignTimer.hasExpired()) { sendCallsign(); m_callsignTimer.start(); } } void CFM::hangState(bool validSignal) { if (validSignal) { DEBUG1("State to RELAYING"); m_state = FS_RELAYING; DEBUG1("Stop ack"); m_rfAck.stop(); beginRelaying(); } else { if (m_hangTimer.isRunning() && m_hangTimer.hasExpired()) { DEBUG1("State to LISTENING"); m_state = FS_LISTENING; m_hangTimer.stop(); if (m_callsignAtEnd) sendCallsign(); m_callsignTimer.stop(); } } if (m_callsignTimer.isRunning() && m_callsignTimer.hasExpired()) { sendCallsign(); m_callsignTimer.start(); } } void CFM::timeoutState(bool validSignal) { if (!validSignal) { DEBUG1("State to TIMEOUT_WAIT"); m_state = FS_TIMEOUT_WAIT; m_ackDelayTimer.start(); } if (m_callsignTimer.isRunning() && m_callsignTimer.hasExpired()) { sendCallsign(); m_callsignTimer.start(); } } void CFM::timeoutWaitState(bool validSignal) { if (validSignal) { DEBUG1("State to TIMEOUT"); m_state = FS_TIMEOUT; m_ackDelayTimer.stop(); } else { if (m_ackDelayTimer.isRunning() && m_ackDelayTimer.hasExpired()) { DEBUG1("State to HANG"); m_state = FS_HANG; m_timeoutTone.stop(); DEBUG1("Send ack"); m_rfAck.start(); m_ackDelayTimer.stop(); m_ackMinTimer.stop(); m_timeoutTimer.stop(); m_hangTimer.start(); } } if (m_callsignTimer.isRunning() && m_callsignTimer.hasExpired()) { sendCallsign(); m_callsignTimer.start(); } } void CFM::sendCallsign() { if (m_holdoffTimer.isRunning()) { if (m_holdoffTimer.hasExpired()) { DEBUG1("Send callsign"); m_callsign.start(); m_holdoffTimer.start(); } } else { DEBUG1("Send callsign"); m_callsign.start(); } } void CFM::beginRelaying() { m_timeoutTimer.start(); m_ackMinTimer.start(); }