/* * Copyright (C) 2009-2017,2020 by Jonathan Naylor G4KLX * Copyright (C) 2025 by Rob Williams M1BGT * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "Config.h" #if defined(MODE_DMR) #include "Globals.h" #include "DMRUserRX.h" #include "DMRSlotType.h" #include "Utils.h" const q15_t SCALING_FACTOR = 19505; // Q15(0.60) const uint8_t MAX_SYNC_SYMBOLS_ERRS = 2U; const uint8_t MAX_SYNC_BYTES_ERRS = 3U; const uint8_t BIT_MASK_TABLE[] = {0x80U, 0x40U, 0x20U, 0x10U, 0x08U, 0x04U, 0x02U, 0x01U}; #define WRITE_BIT1(p,i,b) p[(i)>>3] = (b) ? (p[(i)>>3] | BIT_MASK_TABLE[(i)&7]) : (p[(i)>>3] & ~BIT_MASK_TABLE[(i)&7]) const uint16_t NOENDPTR = 9999U; const uint8_t CONTROL_IDLE = 0x80U; const uint8_t CONTROL_DATA = 0x40U; const uint8_t cachInterleave[DMR_CACH_LENGTH_BITS] = { 0, 7, 8, 9, 1, 10, 11, 12, 2, 13, 14, 15, 3, 16, 4, 17, 18, 19, 5, 20, 21, 22, 6, 23 }; extern bool decodeDMRHamming74(uint8_t *received); CDMRUserRX::CDMRUserRX() : m_bitBuffer(), m_buffer(), m_bitPtr(0U), m_dataPtr(0U), m_endPtr(NOENDPTR), m_maxCorr(0), m_centre(0), m_threshold(0), m_colorCode(0U), m_slot(false) { } void CDMRUserRX::reset() { m_dataPtr = 0U; m_bitPtr = 0U; m_maxCorr = 0; m_threshold = 0; m_centre = 0; m_slot = false; m_endPtr = NOENDPTR; } void CDMRUserRX::samples(const q15_t* samples, uint8_t length) { for (uint8_t i = 0U; i < length; i++) processSample(samples[i]); } void CDMRUserRX::processSample(q15_t sample) { m_bitBuffer[m_bitPtr] <<= 1; if (sample < 0) m_bitBuffer[m_bitPtr] |= 0x01U; m_buffer[m_dataPtr] = sample; bool bsDataSyncFound = countBits32((m_bitBuffer[m_bitPtr] & DMR_SYNC_SYMBOLS_MASK) ^ DMR_BS_DATA_SYNC_SYMBOLS) <= MAX_SYNC_SYMBOLS_ERRS; if ( bsDataSyncFound ) { // Sync pattern found // | CACH (24 bits/60 samples) | Payload (98 bits) | Slot type (10 bits) | Sync (DMR_SYNC_LENGTH_SAMPLES) | Slot type Slot type (10 bits) | Payload (98 bits) | uint16_t ptr = m_dataPtr + DMR_FRAME_PLUS_CACH_LENGTH_SAMPLES - DMR_SYNC_LENGTH_SAMPLES + DMR_RADIO_SYMBOL_LENGTH; if (ptr >= DMR_FRAME_PLUS_CACH_LENGTH_SAMPLES) ptr -= DMR_FRAME_PLUS_CACH_LENGTH_SAMPLES; // ptr is start of first sync sample q31_t corr = 0; q15_t max = -16000; q15_t min = 16000; for (uint8_t i = 0U; i < DMR_SYNC_LENGTH_SYMBOLS; i++) { q15_t val = m_buffer[ptr]; if (val > max) max = val; if (val < min) min = val; switch (DMR_BS_DATA_SYNC_SYMBOLS_VALUES[i]) { case +3: corr -= (val + val + val); break; case +1: corr -= val; break; case -1: corr += val; break; default: // -3 corr += (val + val + val); break; } ptr += DMR_RADIO_SYMBOL_LENGTH; if (ptr >= DMR_FRAME_PLUS_CACH_LENGTH_SAMPLES) ptr -= DMR_FRAME_PLUS_CACH_LENGTH_SAMPLES; } if (corr > m_maxCorr) { q15_t centre = (max + min) >> 1; q31_t v1 = (max - centre) * SCALING_FACTOR; q15_t threshold = q15_t(v1 >> 15); uint8_t sync[DMR_SYNC_BYTES_LENGTH]; uint16_t ptr = m_dataPtr + DMR_FRAME_PLUS_CACH_LENGTH_SAMPLES - DMR_SYNC_LENGTH_SAMPLES + DMR_RADIO_SYMBOL_LENGTH; if (ptr >= DMR_FRAME_PLUS_CACH_LENGTH_SAMPLES) ptr -= DMR_FRAME_PLUS_CACH_LENGTH_SAMPLES; samplesToBits(ptr, DMR_SYNC_LENGTH_SYMBOLS, sync, 4U, centre, threshold); uint8_t errs = 0U; for (uint8_t i = 0U; i < DMR_SYNC_BYTES_LENGTH; i++) errs += countBits8((sync[i] & DMR_SYNC_BYTES_MASK[i]) ^ DMR_BS_DATA_SYNC_BYTES[i]); if (errs <= MAX_SYNC_BYTES_ERRS) { //DEBUG3("DMRUserRX: data sync found centre/threshold", centre, threshold); m_maxCorr = corr; m_centre = centre; m_threshold = threshold; m_endPtr = m_dataPtr + DMR_SLOT_TYPE_LENGTH_SAMPLES / 2U + DMR_INFO_LENGTH_SAMPLES / 2U - 1U; if (m_endPtr >= DMR_FRAME_PLUS_CACH_LENGTH_SAMPLES) m_endPtr -= DMR_FRAME_PLUS_CACH_LENGTH_SAMPLES; } } } if (m_dataPtr == m_endPtr) { uint16_t ptr = m_endPtr + DMR_RADIO_SYMBOL_LENGTH + 1U + DMR_CACH_LENGTH_SAMPLES; if (ptr >= DMR_FRAME_PLUS_CACH_LENGTH_SAMPLES) ptr -= DMR_FRAME_PLUS_CACH_LENGTH_SAMPLES; uint16_t cachePtr = m_endPtr + DMR_RADIO_SYMBOL_LENGTH + 1U; if (cachePtr >= DMR_FRAME_PLUS_CACH_LENGTH_SAMPLES) cachePtr -= DMR_FRAME_PLUS_CACH_LENGTH_SAMPLES; uint8_t frame[DMR_FRAME_LENGTH_BYTES + 1U]; samplesToBits(ptr, DMR_FRAME_LENGTH_SYMBOLS, frame, 8U, m_centre, m_threshold); uint8_t colorCode; uint8_t dataType; CDMRSlotType slotType; slotType.decode(frame + 1U, colorCode, dataType); //DEBUG4("At end, cachePtr/ptr/endPtr", cachePtr, ptr, m_endPtr); if (colorCode == m_colorCode && dataType != DT_IDLE) { // Read the CACH in order to get the time slot uint8_t cach[DMR_CACH_LENGTH_BYTES]; samplesToBits(cachePtr, DMR_CACH_LENGTH_SYMBOLS, cach, 0U, m_centre, m_threshold); if(cachCheck(cach)) { frame[0U] = CONTROL_DATA | dataType; serial.writeDMRData(m_slot, frame, DMR_FRAME_LENGTH_BYTES + 1U); } else { DEBUG1("CACH check failed"); } } m_endPtr = NOENDPTR; m_maxCorr = 0; } m_dataPtr++; if (m_dataPtr >= DMR_FRAME_PLUS_CACH_LENGTH_SAMPLES) m_dataPtr = 0U; m_bitPtr++; if (m_bitPtr >= DMR_RADIO_SYMBOL_LENGTH) m_bitPtr = 0U; } #define READ_BIT1(p,i) ((p[(i)>>3] & BIT_MASK_TABLE[(i)&7]) >> (7 - ((i)&7))) void CDMRUserRX::extractBits(uint8_t* bytes, uint16_t start, uint8_t count_bits, bool* buffer) { for (uint8_t i = 0U; i < count_bits; i++) { buffer[i] = READ_BIT1(bytes, start) == 0x01; start++; } } bool CDMRUserRX::cachCheck(uint8_t* cach) { uint8_t i; bool bits[DMR_CACH_LENGTH_BITS]; extractBits(cach, 0, DMR_CACH_LENGTH_BITS, bits); bool cachdata[DMR_CACH_LENGTH_BITS]; for (i = 0; i < DMR_CACH_LENGTH_BITS; i++) { cachdata[cachInterleave[i]] = bits[i]; } uint8_t tactBits[7]; for (i = 0; i < 7; i++) { tactBits[i] = cachdata[i]; } if(!decodeDMRHamming74(tactBits)) { return false; } // bool at_continuous = tactBits[0]; m_slot = tactBits[1]; // TDMA Channel (TC) return true; } void CDMRUserRX::samplesToBits(uint16_t start, uint8_t count, uint8_t* buffer, uint16_t offset, q15_t centre, q15_t threshold) { for (uint8_t i = 0U; i < count; i++) { q15_t sample = m_buffer[start] - centre; if (sample < -threshold) { WRITE_BIT1(buffer, offset, false); offset++; WRITE_BIT1(buffer, offset, true); offset++; } else if (sample < 0) { WRITE_BIT1(buffer, offset, false); offset++; WRITE_BIT1(buffer, offset, false); offset++; } else if (sample < threshold) { WRITE_BIT1(buffer, offset, true); offset++; WRITE_BIT1(buffer, offset, false); offset++; } else { WRITE_BIT1(buffer, offset, true); offset++; WRITE_BIT1(buffer, offset, true); offset++; } start += DMR_RADIO_SYMBOL_LENGTH; if (start >= DMR_FRAME_PLUS_CACH_LENGTH_SAMPLES) start -= DMR_FRAME_PLUS_CACH_LENGTH_SAMPLES; } } void CDMRUserRX::setColorCode(uint8_t colorCode) { m_colorCode = colorCode; } #endif